Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Coincident hand and foot movements are more reliably performed in the same direction than in opposite directions. Using transcranial magnetic stimulation (TMS) to assess motor cortex function, we examined the physiological basis of these movements across three novel experiments. Experiment 1 demonstrated that upper limb corticomotor excitability changed in a way that facilitated isodirectional movements of the hand and foot, during phasic and isometric muscle activation conditions. Experiment 2 demonstrated that motor cortex inhibition was modified with active, but not passive, foot movement in a manner that facilitated hand movement in the direction of foot movement. Together, these findings demonstrate that the coupling between motor representations within motor cortex is activity dependent. Because there are no known connections between hand and foot areas within primary motor cortex, experiment 3 used a dual-coil paired-pulse TMS protocol to examine functional connectivity between secondary and primary motor areas during active ankle dorsiflexion and plantarflexion. Dorsal premotor cortex (PMd) and supplementary motor area (SMA) conditioning, but not ventral premotor cortex (PMv) conditioning, produced distinct phases of task-dependent modulation of excitability of forearm representations within primary motor cortex (M1). Networks involving PMd-M1 facilitate isodirectional movements of hand and foot, whereas networks involving SMA-M1 facilitate corticomotor pathways nonspecifically, which may help to stabilize posture during interlimb coordination. These results may have implications for targeted neurorehabilitation after stroke.

Original publication




Journal article


J Neurophysiol

Publication Date





414 - 422


Analysis of Variance, Dose-Response Relationship, Radiation, Electric Stimulation, Electromyography, Evoked Potentials, Motor, Foot, Functional Laterality, Hand, Humans, Motor Cortex, Muscle, Skeletal, Psychomotor Performance, Transcranial Magnetic Stimulation