Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: Damage to the cerebral tissue structural connectivity associated with amyotrophic lateral sclerosis (ALS), which extends beyond the motor pathways, can be visualised by diffusion tensor imaging (DTI). The effective translation of DTI metrics as biomarker requires its application across multiple MRI scanners and patient cohorts. A multicentre study was undertaken to assess structural connectivity in ALS within a large sample size. METHODS: 442 DTI data sets from patients with ALS (N=253) and controls (N=189) were collected for this retrospective study, from eight international ALS-specialist clinic sites. Equipment and DTI protocols varied across the centres. Fractional anisotropy (FA) maps of the control participants were used to establish correction matrices to pool data, and correction algorithms were applied to the FA maps of the control and ALS patient groups. RESULTS: Analysis of data pooled from all centres, using whole-brain-based statistical analysis of FA maps, confirmed the most significant alterations in the corticospinal tracts, and captured additional significant white matter tract changes in the frontal lobe, brainstem and hippocampal regions of the ALS group that coincided with postmortem neuropathological stages. Stratification of the ALS group for disease severity (ALS functional rating scale) confirmed these findings. INTERPRETATION: This large-scale study overcomes the challenges associated with processing and analysis of multiplatform, multicentre DTI data, and effectively demonstrates the anatomical fingerprint patterns of changes in a DTI metric that reflect distinct ALS disease stages. This success paves the way for the use of DTI-based metrics as read-out in natural history, prognostic stratification and multisite disease-modifying studies in ALS.

Original publication

DOI

10.1136/jnnp-2015-311952

Type

Journal article

Journal

J Neurol Neurosurg Psychiatry

Publication Date

06/2016

Volume

87

Pages

570 - 579

Keywords

Algorithms, Amyotrophic Lateral Sclerosis, Biomarkers, Brain, Cohort Studies, Diffusion Magnetic Resonance Imaging, Female, Humans, Image Interpretation, Computer-Assisted, Male, Middle Aged, Nerve Net, Prognosis, Retrospective Studies, White Matter