Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our two closest living primate relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus), exhibit significant behavioral differences despite belonging to the same genus and sharing a very recent common ancestor. Differences have been reported in multiple aspects of social behavior, including aggression, sex, play and cooperation. However, the neurobiological basis of these differences has only been minimally investigated and remains uncertain. Here, we present the first ever comparison of chimpanzee and bonobo brains using diffusion tensor imaging, supplemented with a voxel-wise analysis of T1-weighted images to specifically compare neural circuitry implicated in social cognition. We find that bonobos have more gray matter in brain regions involved in perceiving distress in both oneself and others, including the right dorsal amygdala and right anterior insula. Bonobos also have a larger pathway linking the amygdala with the ventral anterior cingulate cortex, a pathway implicated in both top-down control of aggressive impulses as well as bottom-up biases against harming others. We suggest that this neural system not only supports increased empathic sensitivity in bonobos, but also behaviors like sex and play that serve to dissipate tension, thereby limiting distress and anxiety to levels conducive with prosocial behavior.

Original publication

DOI

10.1093/scan/nsr017

Type

Journal article

Journal

Soc Cogn Affect Neurosci

Publication Date

04/2012

Volume

7

Pages

369 - 379

Keywords

Animals, Behavior, Animal, Brain, Brain Mapping, Cognition, Female, Magnetic Resonance Imaging, Male, Pan paniscus, Pan troglodytes, Postmortem Changes, Social Behavior, Species Specificity