Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Autism spectrum disorder (ASD) is classically associated with poor face processing skills, yet evidence suggests that those with obsessive-compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) also have difficulties understanding emotions. We determined the neural underpinnings of dynamic emotional face processing across these three clinical paediatric groups, including developmental trajectories, compared with typically developing (TD) controls. We studied 279 children, 5-19 years of age but 57 were excluded due to excessive motion in fMRI, leaving 222: 87 ASD, 44 ADHD, 42 OCD and 49 TD. Groups were sex- and age-matched. Dynamic faces (happy, angry) and dynamic flowers were presented in 18 pseudo-randomized blocks while fMRI data were collected with a 3T MRI. Group-by-age interactions and group difference contrasts were analysed for the faces vs. flowers and between happy and angry faces. TD children demonstrated different activity patterns across the four contrasts; these patterns were more limited and distinct for the NDDs. Processing happy and angry faces compared to flowers yielded similar activation in occipital regions in the NDDs compared to TDs. Processing happy compared to angry faces showed an age by group interaction in the superior frontal gyrus, increasing with age for ASD and OCD, decreasing for TDs. Children with ASD, ADHD and OCD differentiated less between dynamic faces and dynamic flowers, with most of the effects seen in the occipital and temporal regions, suggesting that emotional difficulties shared in NDDs may be partly attributed to shared atypical visual information processing.

Original publication

DOI

10.1038/s41398-020-01063-2

Type

Journal article

Journal

Transl Psychiatry

Publication Date

02/11/2020

Volume

10