Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background. Chronic pain is a common, often disabling condition thought to involve a combination of peripheral and central neurobiological factors. However, the extent and nature of changes in the brain is poorly understood. Methods. We investigated brain network architecture using resting-state fMRI data in chronic back pain patients in the UK and Japan (41 patients, 56 controls), as well as open data from USA. We applied machine learning and deep learning (conditional variational autoencoder architecture) methods to explore classification of patients/controls based on network connectivity. We then studied the network topology of the data, and developed a multislice modularity method to look for consensus evidence of modular reorganisation in chronic back pain. Results. Machine learning and deep learning allowed reliable classification of patients in a third, independent open data set with an accuracy of 63%, with 68% in cross validation of all data. We identified robust evidence of network hub disruption in chronic pain, most consistently with respect to clustering coefficient and betweenness centrality. We found a consensus pattern of modular reorganisation involving extensive, bilateral regions of sensorimotor cortex, and characterised primarily by negative reorganisation - a tendency for sensorimotor cortex nodes to be less inclined to form pairwise modular links with other brain nodes. Furthermore, these regions were found to display increased connectivity with the pregenual anterior cingulate cortex, a region known to be involved in endogenous pain control. In contrast, intraparietal sulcus displayed a propensity towards positive modular reorganisation, suggesting that it might have a role in forming modules associated with the chronic pain state. Conclusion. The results provide evidence of consistent and characteristic brain network changes in chronic pain, characterised primarily by extensive reorganisation of the network architecture of the sensorimotor cortex.

Original publication

DOI

10.12688/wellcomeopenres.14069.2

Type

Journal article

Journal

Wellcome Open Res

Publication Date

2018

Volume

3

Keywords

Chronic pain, Connectomics, Nociception, arthritis, deep learning, endogenous modulation, graph theory, hub disruption, multislice modularity, osteoarthritis, rostral ACC, sensorimotor