Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

As well as being expressed as a full-length transcript, the group II metabotropic glutamate receptor 3 (GRM3, mGlu3) gene is expressed as an mRNA isoform which lacks exon 4 (GRM3Δ4) and which is predicted to encode a protein with a novel C terminus (called mGlu3Δ4). This variant may contribute to the mechanism by which GRM3 acts as a schizophrenia risk gene. However, little is known about the properties or function of mGlu3Δ4. Here, using transiently transfected HEK293T/17 cells, we confirm that GRM3Δ4 cDNA is translated, with mGlu3Δ4 existing as a homodimer as well as a monomer, and localizing primarily to cell membranes including the plasma membrane. Co-immunoprecipitation shows that mGlu3Δ4 interacts with canonical mGlu3. mGlu3Δ4 does not bind the mGlu2/3 antagonist [3H]LY341495, but the presence of mGlu3Δ4 reduces binding of [3H]LY341495 to mGlu3, paralleled by a decrease in the abundance of membrane-associated mGlu3. These experiments indicate that mGlu3Δ4 may negatively modulate mGlu3, and thereby impact on the roles of GRM3/mGlu3 in schizophrenia and as a therapeutic target.

Original publication

DOI

10.1177/0269881117715597

Type

Journal article

Journal

J Psychopharmacol

Publication Date

12/2017

Volume

31

Pages

1519 - 1526

Keywords

G protein-coupled receptor, Metabotropic glutamate receptor, alternative splicing, isoform, schizophrenia, Amino Acids, Cell Membrane, HEK293 Cells, Humans, Ligands, Protein Isoforms, Radioligand Assay, Receptors, Metabotropic Glutamate, Schizophrenia, Transfection, Tritium, Xanthenes