Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phasic dopamine transmission is posited to act as a critical teaching signal that updates the stored (or "cached") values assigned to reward-predictive stimuli and actions. It is widely hypothesized that these cached values determine the selection among multiple courses of action, a premise that has provided a foundation for contemporary theories of decision making. In the current work we used fast-scan cyclic voltammetry to probe dopamine-associated cached values from cue-evoked dopamine release in the nucleus accumbens of rats performing cost-benefit decision-making paradigms to evaluate critically the relationship between dopamine-associated cached values and preferences. By manipulating the amount of effort required to obtain rewards of different sizes, we were able to bias rats toward preferring an option yielding a high-value reward in some sessions and toward instead preferring an option yielding a low-value reward in others. Therefore, this approach permitted the investigation of dopamine-associated cached values in a context in which reward magnitude and subjective preference were dissociated. We observed greater cue-evoked mesolimbic dopamine release to options yielding the high-value reward even when rats preferred the option yielding the low-value reward. This result identifies a clear mismatch between the ordinal utility of the available options and the rank ordering of their cached values, thereby providing robust evidence that dopamine-associated cached values cannot be the sole determinant of choices in simple economic decision making.

Original publication

DOI

10.1073/pnas.1419770111

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

23/12/2014

Volume

111

Pages

18357 - 18362

Keywords

action selection, cached values, decision making, dopamine, Animals, Decision Making, Dopamine, Nucleus Accumbens, Rats, Rats, Sprague-Dawley, Reward