The impact of brain lesions on tDCS-induced electric fields.
Evans C., Johnstone A., Zich C., Lee JSA., Ward NS., Bestmann S.
Transcranial direct current stimulation (tDCS) can enhance motor and language rehabilitation after stroke. Though brain lesions distort tDCS-induced electric field (E-field), systematic accounts remain limited. Using electric field modelling, we investigated the effect of 630 synthetic lesions on E-field magnitude in the region of interest (ROI). Models were conducted for two tDCS montages targeting either primary motor cortex (M1) or Broca's area (BA44). Absolute E-field magnitude in the ROI differed by up to 42% compared to the non-lesioned brain depending on lesion size, lesion-ROI distance, and lesion conductivity value. Lesion location determined the sign of this difference: lesions in-line with the predominant direction of current increased E-field magnitude in the ROI, whereas lesions located in the opposite direction decreased E-field magnitude. We further explored how individualised tDCS can control lesion-induced effects on E-field. Lesions affected the individualised electrode configuration needed to maximise E-field magnitude in the ROI, but this effect was negligible when prioritising the maximisation of radial inward current. Lesions distorting tDCS-induced E-field, is likely to exacerbate inter-individual variability in E-field magnitude. Individualising electrode configuration and stimulator output can minimise lesion-induced variability but requires improved estimates of lesion conductivity. Individualised tDCS is critical to overcome E-field variability in lesioned brains.