Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: We investigated changes in the optic tract and optic radiation in patients with multiple sclerosis (MS) by comparing unilateral and bilateral optic nerve damage assessed based on visual evoked potentials (VEPs) using advanced diffusion MR metrics. METHODS: In 21 MS patients, diffusion MRI was performed. Maps of fractional anisotropy, apparent diffusion coefficient (ADC), and mean kurtosis (MK) were computed. On the basis of the P100 latency in VEPs, the MS patients were divided into three groups: bilateral (n=7), unilateral (n=7), and no abnormality (n=7). Their optic tracts and optic radiations were analyzed with diffusion MRI-based fiber tracking. We also investigated the correlations between diffusion parameters and VEPs (n=21). RESULTS: In the optic tract, the diffusion changes in each of the three groups showed step-like changes. The diffusion changes in the optic radiations of the unilateral group were similar to those in the normal VEP group. Only the bilateral group showed significantly higher ADC and lower MK relative to the other two groups (P<0.05, Steel-Dwass multiple-comparison test). A significant positive correlation between VEP latency and ADC and a significant negative correlation between VEP latency and MK were observed (P<0.01, Spearman's correction). CONCLUSIONS: We first evaluated the relationship between VEPs and DKI and concluded that the lateral geniculate nucleus may compensate for unilateral damage in the pre-geniculate optic pathway via neural plasticity.

Original publication




Journal article


Magn Reson Imaging

Publication Date





24 - 30


Bilateral and unilateral optic nerve damage, Diffusional kurtosis imaging, Multiple sclerosis, Tractography, Visual evoked potentials, Adult, Anisotropy, Diffusion Magnetic Resonance Imaging, Evoked Potentials, Visual, Female, Humans, Image Processing, Computer-Assisted, Male, Middle Aged, Multiple Sclerosis, Nerve Fibers, Optic Nerve, Optic Tract, Severity of Illness Index