Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Noncontrast 4D-MR-angiography (MRA) using arterial spin labeling (ASL) is beneficial because high spatial and temporal resolution can be achieved. However, ASL requires acquisition of labeled and control images for each phase. The purpose of this study is to present a new accelerated 4D-MRA approach that requires only a single control acquisition, achieving similar image quality in approximately half the scan time. METHODS: In a multi-phase Look-Locker sequence, the first phase was used as the control image and the labeling pulse was applied before the second phase. By acquiring the control and labeled images within a single Look-Locker cycle, 4D-MRA was generated in nearly half the scan time of conventional ASL. However, this approach potentially could be more sensitive to off-resonance and magnetization transfer (MT) effects. To counter this, careful optimizations of the labeling pulse were performed by Bloch simulations. In in-vivo studies arterial visualization was compared between the new and conventional ASL approaches. RESULTS: Optimization of the labeling pulse successfully minimized off-resonance effects. Qualitative assessment showed that residual MT effects did not degrade visualization of the peripheral arteries. CONCLUSION: This study demonstrated that the proposed approach achieved similar image quality as conventional ASL-MRA approaches in just over half the scan time. Magn Reson Med 79:224-233, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Original publication




Journal article


Magn Reson Med

Publication Date





224 - 233


FOCI pulse, Time-resolved MR angiography (MRA), arterial spin labeling (ASL), hyperbolic secant (HS) pulse, noncontrast 4D-MRA, Acceleration, Adult, Angiography, Angiography, Digital Subtraction, Arteries, Computer Simulation, Female, Healthy Volunteers, Humans, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Angiography, Male, Middle Aged, Radio Waves, Spin Labels, Time Factors, Young Adult