Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Both dynamic magnetic resonance angiography (4D-MRA) and perfusion imaging can be acquired by using arterial spin labeling (ASL). While 4D-MRA highlights large vessel pathology, such as stenosis or collateral blood flow patterns, perfusion imaging provides information on the microvascular status. Therefore, a complete picture of the cerebral hemodynamic condition could be obtained by combining the two techniques. Here, we propose a novel technique for simultaneous acquisition of 4D-MRA and perfusion imaging using time-encoded pseudo-continuous arterial spin labeling. METHODS: The time-encoded pseudo-continuous arterial spin labeling module consisted of a first subbolus that was optimized for perfusion imaging by using a labeling duration of 1800 ms, whereas the other six subboli of 130 ms were used for encoding the passage of the labeled spins through the arterial system for 4D-MRA acquisition. After the entire labeling module, a multishot 3D turbo-field echo-planar-imaging readout was executed for the 4D-MRA acquisition, immediately followed by a single-shot, multislice echo-planar-imaging readout for perfusion imaging. The optimal excitation flip angle for the 3D turbo-field echo-planar-imaging readout was investigated by evaluating the image quality of the 4D-MRA and perfusion images as well as the accuracy of the estimated cerebral blood flow values. RESULTS: When using 36 excitation radiofrequency pulses with flip angles of 5 or 7.5°, the saturation effects of the 3D turbo-field echo-planar-imaging readout on the perfusion images were relatively moderate and after correction, there were no statistically significant differences between the obtained cerebral blood flow values and those from traditional time-encoded pseudo-continuous arterial spin labeling. CONCLUSIONS: This study demonstrated that simultaneous acquisition of 4D-MRA and perfusion images can be achieved by using time-encoded pseudo-continuous arterial spin labeling. Magn Reson Med 79:2676-2684, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Original publication

DOI

10.1002/mrm.26926

Type

Journal article

Journal

Magn Reson Med

Publication Date

05/2018

Volume

79

Pages

2676 - 2684

Keywords

4D-MRA, perfusion image, time-encoded pCASL, Adult, Brain, Cerebrovascular Circulation, Female, Humans, Imaging, Three-Dimensional, Magnetic Resonance Angiography, Male, Middle Aged, Perfusion Imaging, Young Adult