Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Cannabis use is highly prevalent and often considered to be relatively harmless. Nonetheless, a subset of regular cannabis users may develop dependence, experiencing poorer quality of life and greater mental health problems relative to non-dependent users. The neuroanatomy characterizing cannabis use versus dependence is poorly understood. We aimed to delineate the contributing role of cannabis use and dependence on morphology of the hippocampus, one of the most consistently altered brain regions in cannabis users, in a large multi-site dataset aggregated across four research sites. We compared hippocampal volume and vertex-level hippocampal shape differences (1) between 121 non-using controls and 140 cannabis users; (2) between 106 controls, 50 non-dependent users and 70 dependent users; and (3) between a subset of 41 controls, 41 non-dependent users and 41 dependent users, matched on sample characteristics and cannabis use pattern (onset age and dosage). Cannabis users did not differ from controls in hippocampal volume or shape. However, cannabis-dependent users had significantly smaller right and left hippocampi relative to controls and non-dependent users, irrespective of cannabis dosage. Shape analysis indicated localized deflations in the superior-medial body of the hippocampus. Our findings support neuroscientific theories postulating dependence-specific neuroadaptations in cannabis users. Future efforts should uncover the neurobiological risk and liabilities separating dependent and non-dependent use of cannabis.

Original publication

DOI

10.1111/adb.12652

Type

Journal article

Journal

Addict Biol

Publication Date

07/2019

Volume

24

Pages

822 - 834

Keywords

MRI, brain, cannabis, dependence, hippocampus, neuroimaging, substance use