Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Small-nerve fiber, or small-fiber, degeneration commonly occurs in patients with peripheral neuropathies, resulting in a deterioration of nerve function. Currently, the gold standard to identify small-fiber degeneration is through skin biopsy. Simple clinical tests aim to identify small-fiber degeneration, but their validity remains unknown. OBJECTIVES: To examine the validity of clinical tests to assess small-nerve fiber degeneration, using carpal tunnel syndrome as a model neuropathy. METHODS: One hundred seven participants (22 healthy, 85 with carpal tunnel syndrome) in this prospective, cross-sectional diagnostic accuracy study underwent pinprick testing of the index finger and were assessed for cold detection threshold and warm detection threshold using quantitative sensory testing. In a subgroup of patients with carpal tunnel syndrome (n = 51), cold and warm sensations were also tested, using coins at room and body temperature, respectively. The validity of these clinical tests was established against intra-epidermal nerve fiber density measured in skin biopsies from the index finger. RESULTS: Optimal validity occurred with clusters of tests. Specifically, normal warm or cold sensation is highly sensitive to rule out small-fiber degeneration (sensitivity, 0.98; 95% confidence interval [CI]: 0.85, 0.99), but has a low specificity (0.20; 95% CI: 0.03, 0.52). By contrast, a reduction in pinprick is highly specific (0.88; 95% CI: 0.72, 0.95), and so can be used to rule in small-fiber degeneration. For quantitative sensory testing, the highest specificity (0.83) occurs for warm detection threshold and the highest sensitivity (0.84; 95% CI: 0.72, 0.91) for cold detection threshold or warm detection threshold. CONCLUSION: Pinprick testing, followed by warm and cold tests if pinprick is normal, is a valid and cost-effective method to detect small-fiber degeneration. For quantitative sensory testing, warm detection threshold is useful for ruling in small-fiber degeneration. To rule out small-fiber degeneration, both cold detection threshold and warm detection threshold must be negative. LEVEL OF EVIDENCE: Diagnosis, level 2. J Orthop Sports Phys Ther 2018;48(10):767-774. Epub 22 Jun 2018. doi:10.2519/jospt.2018.8230.

Original publication




Journal article


J Orthop Sports Phys Ther

Publication Date





767 - 774


bedside sensory testing, peripheral neuropathy, sensitivity, small-fiber degeneration, specificity