Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Purpose of Review: An increase in oscillatory activity in the γ-frequency band (approximately 50-100 Hz) has long been noted during human movement. However, its functional role has been difficult to elucidate. The advent of novel techniques, particularly transcranial alternating current stimulation (tACS), has dramatically increased our ability to study γ oscillations. Here, we review our current understanding of the role of γ oscillations in the human motor cortex, with reference to γ activity outside the motor system, and evidence from animal models. Recent Findings: Evidence for the neurophysiological basis of human γ oscillations is beginning to emerge. Multimodal studies, essential given the necessarily indirect measurements acquired in humans, are beginning to provide convergent evidence for the role of γ oscillations in movement, and their relationship to plasticity. Summary: Human motor cortical γ oscillations appear to play a key role in movement, and relate to learning. However, there are still major questions to be answered about their physiological basis and precise role in human plasticity. It is to be hoped that future research will take advantage of recent technical advances and the physiological basis and functional significance of this intriguing and important brain rhythm will be fully elucidated.

Original publication

DOI

10.1007/s40473-018-0151-z

Type

Journal article

Journal

Curr Behav Neurosci Rep

Publication Date

2018

Volume

5

Pages

136 - 142

Keywords

Gamma oscillations, Motor control, Motor cortex, Motor learning, Movement