Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent developments in highly accelerated fMRI data acquisition have employed low-rank and/or sparsity constraints for image reconstruction, as an alternative to conventional, time-independent parallel imaging. When under-sampling factors are high or the signals of interest are low-variance, however, functional data recovery can be poor or incomplete. We introduce a method for improving reconstruction fidelity using external constraints, like an experimental design matrix, to partially orient the estimated fMRI temporal subspace. Combining these external constraints with low-rank constraints introduces a new image reconstruction model that is analogous to using a mixture of subspace-decomposition (PCA/ICA) and regression (GLM) models in fMRI analysis. We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R = 16 in a radial-Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of subtle features.

Original publication




Journal article



Publication Date





97 - 110


Algorithms, Brain, Brain Mapping, Computer Simulation, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Principal Component Analysis, Signal Processing, Computer-Assisted