Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Myelin sheaths in the vertebrate nervous system enable faster impulse propagation, while myelinating glia provide vital support to axons. Once considered a static insulator, converging evidence now suggests that myelin in the central nervous system can be dynamically regulated by neuronal activity and continues to participate in nervous system plasticity beyond development. While the link between experience and myelination gains increased recognition, it is still unclear what role such adaptive myelination plays in facilitating and shaping behaviour. Additionally, fundamental mechanisms and principles underlying myelin remodelling remain poorly understood. In this review, we will discuss new insights into the link between myelin plasticity and behaviour, as well as mechanistic aspects of myelin remodelling that may help to elucidate this intriguing process.

Original publication

DOI

10.1016/j.conb.2017.09.014

Type

Journal article

Journal

Curr Opin Neurobiol

Publication Date

17/10/2017

Volume

47

Pages

86 - 92