Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In vivo magnetic resonance spectroscopy provides insight into metabolism in the human body. New acquisition protocols are often proposed to improve the quality or efficiency of data collection. Processing pipelines must also be developed to use these data optimally. Current fitting software is either targeted at general spectroscopy fitting, or for specific protocols. We therefore introduce the MATLAB-based OXford Spectroscopy Analysis (OXSA) toolbox to allow researchers to rapidly develop their own customised processing pipelines. The toolbox aims to simplify development by: being easy to install and use; seamlessly importing Siemens Digital Imaging and Communications in Medicine (DICOM) standard data; allowing visualisation of spectroscopy data; offering a robust fitting routine; flexibly specifying prior knowledge when fitting; and allowing batch processing of spectra. This article demonstrates how each of these criteria have been fulfilled, and gives technical details about the implementation in MATLAB. The code is freely available to download from https://github.com/oxsatoolbox/oxsa.

Original publication

DOI

10.1371/journal.pone.0185356

Type

Journal article

Journal

PLoS One

Publication Date

2017

Volume

12

Keywords

Access to Information, Algorithms, Humans, Imaging, Three-Dimensional, Internet, Magnetic Resonance Spectroscopy, Signal Processing, Computer-Assisted, Software