Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Right brain injury causes visual neglect - lost awareness of left space. During prism adaptation therapy, patients adapt to a rightward optical shift by recalibrating right arm movements leftward. This can improve left neglect, but the benefit of a single session is transient (~1 day). Here we show that tonic disinhibition of left motor cortex during prism adaptation enhances consolidation, stabilizing both sensorimotor and cognitive prism after-effects. In three longitudinal patient case series, just 20 min of combined stimulation/adaptation caused persistent cognitive after-effects (neglect improvement) that lasted throughout follow-up (18-46 days). Moreover, adaptation without stimulation was ineffective. Thus stimulation reversed treatment resistance in chronic visual neglect. These findings challenge consensus that because the left hemisphere in neglect is pathologically over-excited it ought to be suppressed. Excitation of left sensorimotor circuits, during an adaptive cognitive state, can unmask latent plastic potential that durably improves resistant visual attention deficits after brain injury.

Original publication

DOI

10.7554/eLife.26602

Type

Journal article

Journal

Elife

Publication Date

12/09/2017

Volume

6

Keywords

human, motor memory consolidation, neglect rehabilitation, neuroscience, prism adaptation, Adaptation, Physiological, Adult, Attention, Brain Injuries, Brain Mapping, Female, Humans, Male, Middle Aged, Motor Cortex, Nerve Net, Neuronal Plasticity, Neuropsychological Tests, Perceptual Disorders, Recovery of Function, Sensorimotor Cortex, Visual Perception