Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45-62% of ASC adults show evidence for large impairments (Cohen's d = -1.03 to -11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals.

Original publication

DOI

10.1038/srep35333

Type

Journal article

Journal

Sci Rep

Publication Date

18/10/2016

Volume

6

Keywords

Adolescent, Adult, Autism Spectrum Disorder, Cognition, Emotions, Female, Genomics, Humans, Male, Middle Aged, Reading, Systems Biology, Young Adult