Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Amyotrophic lateral sclerosis (ALS) is now recognised to be a heterogeneous neurodegenerative syndrome of the motor system and its frontotemporal cortical connections. The development and application of structural and functional imaging over the last three decades, in particular magnetic resonance imaging (MRI), has allowed traditional post mortem histopathological and emerging molecular findings in ALS to be placed in a clinical context. Cerebral grey and white matter structural MRI changes are increasingly being understood in terms of brain connectivity, providing insights into the advancing degenerative process and producing candidate biomarkers. Such markers may refine the prognostic stratification of patients and the diagnostic pathway, as well as providing an objective assessment of changes in disease activity in response to future therapeutic agents. Studies are being extended to the spinal cord, and the application of neuroimaging to unaffected carriers of highly penetrant genetic mutations linked to the development of ALS offers a unique window to the pre-symptomatic landscape.

Original publication

DOI

10.1007/s11910-015-0569-6

Type

Journal article

Journal

Curr Neurol Neurosci Rep

Publication Date

07/2015

Volume

15

Keywords

Amyotrophic Lateral Sclerosis, Animals, Brain, Humans, Ligands, Magnetic Resonance Imaging, Neuroimaging, Positron-Emission Tomography