Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest that competitive inhibition may occur in early valuation stages, before option selection. We found that behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents within-attribute competition, competition between attributes and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead, our results suggest a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage.

Original publication




Journal article


Nat Neurosci

Publication Date





1613 - 1622


Adult, Brain, Brain Mapping, Choice Behavior, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Social Behavior, Task Performance and Analysis, Young Adult