Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although damage to the medial frontal cortex causes profound decision-making impairments, it has been difficult to pinpoint the relative contributions of key anatomical subdivisions. Here we use function magnetic resonance imaging to examine the contributions of human ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC) during sequential choices between multiple alternatives--two key features of choices made in ecological settings. By carefully constructing options whose current value at any given decision was dissociable from their longer term value, we were able to examine choices in current and long-term frames of reference. We present evidence showing that activity at choice and feedback in vmPFC and dACC was tied to the current choice and the best long-term option, respectively. vmPFC, mid-cingulate, and posterior cingulate cortex encoded the relative value between the chosen and next best option at each sequential decision, whereas dACC encoded the relative value of adapting choices from the option with the highest value in the longer term. Furthermore, at feedback we identify temporally dissociable effects that predict repetition of the current choice and adaptation away from the long-term best option in vmPFC and dACC, respectively. These functional dissociations at choice and feedback suggest that sequential choices are subject to competing cortical mechanisms.

Original publication

DOI

10.1523/JNEUROSCI.3022-12.2013

Type

Journal article

Journal

J Neurosci

Publication Date

06/02/2013

Volume

33

Pages

2242 - 2253

Keywords

Adult, Choice Behavior, Female, Gyrus Cinguli, Humans, Magnetic Resonance Imaging, Male, Neural Pathways, Photic Stimulation, Prefrontal Cortex, Psychomotor Performance, Young Adult