Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Microgliosis is implicated in the pathophysiology of several neurological disorders, including neuropathic pain. Consequently, perturbation of microgliosis is a mechanistic and drug development target in neuropathic pain, which highlights the requirement for specific, sensitive and reproducible methods of microgliosis measurement. In this study, we used the spinal microgliosis associated with L5 spinal nerve transection and minocycline-induced attenuation thereof to: (1) evaluate novel software based semi-quantitative image analysis paradigms for the assessment of immunohistochemical images. Microgliosis was revealed by immunoreactivity to OX42. Several image analysis paradigms were assessed and compared to a previously validated subjective categorical rating scale. This comparison revealed that grey scale measurement of the proportion of a defined area of spinal cord occupied by OX42 immunoreactive cells is a robust image analysis paradigm. (2) Develop and validate a flow cytometric approach for quantification of spinal microgliosis. The flow cytometric technique reliably quantified microgliosis in spinal cord cell suspensions, using OX42 and ED9 immunoreactivity to identify microglia. The results suggest that image analysis of immunohistochemical revelation of microgliosis reliably detects the spinal microgliosis in response to peripheral nerve injury and pharmacological attenuation thereof. In addition, flow cytometry provides an alternative approach for quantitative analysis of spinal microgliosis elicited by nerve injury.

Original publication

DOI

10.1016/j.jneumeth.2007.04.013

Type

Journal article

Journal

J Neurosci Methods

Publication Date

30/08/2007

Volume

164

Pages

207 - 217

Keywords

Animals, Anti-Bacterial Agents, Antigens, Differentiation, CD11b Antigen, Diagnostic Imaging, Flow Cytometry, Functional Laterality, Immunohistochemistry, Male, Microglia, Minocycline, Peripheral Nervous System Diseases, Rats, Rats, Wistar, Reproducibility of Results, Software, Spinal Cord, Statistics, Nonparametric