Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human cortical visual system is organized into major pathways: a dorsal stream projecting to the superior parietal lobe (SPL), considered to be critical for visuospatial perception or on-line control of visually guided movements, and a ventral stream leading to the inferotemporal cortex, mediating object perception. Between these structures lies a large region, consisting of the inferior parietal lobe (IPL) and superior temporal gyrus (STG), the function of which is controversial. Lesions here can lead to spatial neglect, a condition associated with abnormal visuospatial perception as well as impaired visually guided movements, suggesting that the IPL+STG may have largely a "dorsal" role. Here, we use a nonspatial task to examine the deployment of visuotemporal attention in focal lesion patients, with or without spatial neglect. We show that, regardless of the presence of neglect, damage to the IPL+STG leads to a more prolonged deployment of visuotemporal attention compared to lesions of the SPL. Our findings suggest that the human IPL+STG makes an important contribution to nonspatial perception, and this is consistent with a role that is neither strictly "dorsal" nor "ventral". We propose instead that the IPL+STG has a top-down control role, contributing to the functions of both dorsal and ventral visual systems.

Type

Journal article

Journal

Curr Biol

Publication Date

06/08/2002

Volume

12

Pages

1320 - 1325

Keywords

Attention, Brain Injuries, Brain Mapping, Functional Laterality, Humans, Magnetic Resonance Imaging, Parietal Lobe, Reaction Time, Reference Values, Visual Cortex, Visual Perception