Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Task-functional magnetic resonance imaging studies have shown that early cortical recruitment exists in multiple sclerosis, which can partly explain the discrepancy between conventional magnetic resonance imaging and clinical disability. The study of the brain 'at rest' may provide additional information, because task-induced metabolic changes are relatively small compared to the energy use of the resting brain. We therefore questioned whether functional changes exist at rest in the early phase of multiple sclerosis, and addressed this question by a network analysis of no-task functional magnetic resonance imaging data. Fourteen patients with symptoms suggestive of multiple sclerosis (clinically isolated syndrome), 31 patients with relapsing remitting multiple sclerosis and 41 healthy controls were included. Resting state functional magnetic resonance imaging data were brought to standard space using non-linear registration, and further analysed using multi-subject independent component analysis and individual time-course regression. Eight meaningful resting state networks were identified in our subjects and compared between the three groups with non-parametric permutation testing, using threshold-free cluster enhancement to correct for multiple comparisons. Additionally, quantitative measures of structural damage were obtained. Grey and white matter volumes, normalized for head size, were measured for each subject. White matter integrity was investigated with diffusion tensor measures that were compared between groups voxel-wise using tract-based spatial statistics. Patients with clinically isolated syndrome showed increased synchronization in six of the eight resting state networks, including the default mode network and sensorimotor network, compared to controls or relapsing remitting patients. No significant decreases were found in patients with clinically isolated syndrome. No significant resting state synchronization differences were found between relapsing remitting patients and controls. Normalized grey matter volume was decreased and white matter diffusivity measures were abnormal in relapsing remitting patients compared to controls, whereas no atrophy or diffusivity changes were found for the clinically isolated syndrome group. Thus, early synchronization changes are found in patients with clinically isolated syndrome that are suggestive of cortical reorganization of resting state networks. These changes are lost in patients with relapsing remitting multiple sclerosis with increasing brain damage, indicating that cortical reorganization of resting state networks is an early and finite phenomenon in multiple sclerosis.

Original publication

DOI

10.1093/brain/awq058

Type

Journal article

Journal

Brain

Publication Date

06/2010

Volume

133

Pages

1612 - 1621

Keywords

Adult, Brain, Cortical Synchronization, Demyelinating Diseases, Diffusion Tensor Imaging, Female, Humans, Magnetic Resonance Imaging, Male, Multiple Sclerosis, Relapsing-Remitting, Neural Pathways, Organ Size, Rest, Signal Processing, Computer-Assisted