Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis.
Kincses ZT., Ropele S., Jenkinson M., Khalil M., Petrovic K., Loitfelder M., Langkammer C., Aspeck E., Wallner-Blazek M., Fuchs S., Jehna M., Schmidt R., Vécsei L., Fazekas F., Enzinger C.
BACKGROUND: Lesion dissemination in time and space represents a key feature and diagnostic marker of multiple sclerosis (MS). The correlation between magnetic resonance imaging (MRI) lesion load and disability is only modest, however. Strategic lesion location might at least partially account for this 'clinico-radiologic paradox'. OBJECTIVES: Here we used a non-parametric permutation-based approach to map lesion location probability based on MS lesions identified on T2-weighted MRI. We studied 121 patients with clinically isolated syndrome, relapsing-remitting or secondary progressive MS and correlated these maps to assessments of neurologic and cognitive functions. RESULTS: The Expanded Disability Status Scale correlated with bilateral periventricular lesion location (LL), and sensory and coordination functional system deficits correlated with lesion accumulation in distinct anatomically plausible regions, i.e. thalamus and middle cerebellar peduncule. Regarding cognitive performance, decreased verbal fluency correlated with left parietal LL comprising the putative superior longitudinal fascicle. Delayed spatial recall correlated with _amygdalar, _left frontal and parietal LL. Delayed selective reminding correlated with bilateral frontal and temporal LL. However, only part of the spectrum of cognitive and neurological problems encountered in our cohort could be explained by specific lesion location. CONCLUSIONS: Lesion probability mapping supports the association of specific lesion locations with symptom development in MS, but only to limited extent.