Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The RF B(1) distribution was studied, theoretically and experimentally, in phantoms and in the head of volunteers using a 3 T MRI system equipped with a birdcage coil. Agreement between numerical simulation and experiment demonstrates that B(1) distortion at high field can be explained with 3D full-Maxwell calculations. It was found that the B(1) distribution in the transverse plane is strongly dependent on the dielectric properties of the sample. We show that this is a consequence of RF penetration effects combined with RF standing wave effects. In contrast, along the birdcage coil z-axis the B(1) distribution is determined mainly by the coil geometry. In the transverse plane, the region of B(1) uniformity (within 10% of the maximum) was 15 cm with oil, 6 cm with distilled water, 11 cm with saline, and 10 cm in the head. Along z the B(1) uniformity was 9 cm with phantoms and 7 cm in the head.


Journal article


Magn Reson Med

Publication Date





379 - 385


Brain Mapping, Electromagnetic Fields, Magnetic Resonance Imaging, Models, Theoretical, Phantoms, Imaging