Performance evaluation of computerized antepartum fetal heart rate monitoring: Dawes-Redman algorithm at term.
Davis Jones G., Albert B., Cooke W., Vatish M.
OBJECTIVES: To assess the effectiveness of the Dawes-Redman algorithm in identifying fetal wellbeing at term by analyzing 30 years of retrospective clinical data, comparing normal and adverse pregnancy outcomes, evaluating key metrics and testing its performance when used 0-48 h before delivery. METHODS: Antepartum fetal heart rate (FHR) traces from term singleton pregnancies at 37 + 0 to 41 + 6 weeks' gestation obtained between 1991 and 2024 were extracted from the Oxford University Hospitals database. Traces with > 30% of their signal information missing or with incomplete Dawes-Redman analyses were excluded. Only traces performed within 48 h prior to delivery were considered. A cohort of pregnancies with subsequent normal pregnancy outcome (NPO) was established using rigorous inclusion and exclusion criteria. Another cohort of pregnancies with adverse pregnancy outcome (APO) was developed if the neonate experienced at least one of seven APOs after delivery. Propensity score matching (PSM) facilitated a balanced comparison between NPO and APO cohorts using six factors: gestational age at FHR monitoring, fetal sex, maternal body mass index at presentation, maternal age at delivery, parity and time interval between FHR trace and delivery. FHR traces were categorized as either 'criteria met' (indicating fetal wellbeing) or 'criteria not met' (indicating a need for further evaluation) according to the Dawes-Redman algorithm, which informed the evaluation of predictive performance metrics. Performance was assessed using accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (NPV) adjusted for various population risk prevalences of APO. RESULTS: A balanced dataset of 3316 antepartum FHR traces was developed with PSM (standardized mean difference