Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we report an exploratory investigation into this with chronic intracranial recordings from the prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12 to 20 Hz) oscillations tracking effort on a single-trial basis and PFC theta (4 to 7 Hz) signaling previous trial reward, with no effects of net subjective value. Stimulation of PFC increased overall acceptance of offers and sensitivity to reward while decreasing the impact of effort on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, supports a causal role of PFC for such choices, and seeds hypotheses for future studies.

Original publication

DOI

10.1073/pnas.2322869121

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

30/07/2024

Volume

121

Keywords

Parkinson’s disease, decision making, effort, motivation, reward, Humans, Prefrontal Cortex, Reward, Decision Making, Basal Ganglia, Male, Theta Rhythm, Female, Parkinson Disease, Middle Aged, Beta Rhythm, Aged