Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Early childhood experience alters visual development, a process exemplified by amblyopia, a common neurodevelopmental condition resulting in cortically reduced vision in one eye. Visual deficits in amblyopia may be a consequence of abnormal suppressive interactions in the primary visual cortex by inhibitory neurotransmitter γ-aminobutyric acid (GABA). We examined the relationship between visual acuity loss and GABA+ in adult human participants with amblyopia. Single voxel proton magnetic resonance spectroscopy (MRS) data were collected from the early visual cortex (EVC) and posterior cingulate cortex (control region) of twenty-eight male and female adults with current or past amblyopia while they viewed flashing checkerboards monocularly, binocularly, or while they had their eyes closed. First, we compared GABA+ concentrations between conditions to evaluate suppressive binocular interactions. Then, we correlated the degree of visual acuity loss with GABA+ levels to test whether GABAergic inhibition could explain visual acuity deficits. Visual cortex GABA+ was not modulated by viewing condition, and we found weak evidence for a negative correlation between visual acuity deficits and GABA+. These findings suggest that reduced vision in one eye due to amblyopia is not strongly linked to GABAergic inhibition in the visual cortex. We advanced our understanding of early experience dependent plasticity in the human brain by testing the association between visual acuity deficits and visual cortex GABA in amblyopes of the most common subtypes. Our study shows that the relationship was not as clear as expected and provides avenues for future investigation.

Original publication

DOI

10.1162/imag_a_00256

Type

Journal article

Journal

Imaging Neuroscience

Publisher

MIT Press

Publication Date

22/07/2024