Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our decisions are guided by information learnt from our environment. This information may come via personal experiences of reward, but also from the behaviour of social partners. Social learning is widely held to be distinct from other forms of learning in its mechanism and neural implementation; it is often assumed to compete with simpler mechanisms, such as reward-based associative learning, to drive behaviour. Recently, neural signals have been observed during social exchange reminiscent of signals seen in studies of associative learning. Here we demonstrate that social information may be acquired using the same associative processes assumed to underlie reward-based learning. We find that key computational variables for learning in the social and reward domains are processed in a similar fashion, but in parallel neural processing streams. Two neighbouring divisions of the anterior cingulate cortex were central to learning about social and reward-based information, and for determining the extent to which each source of information guides behaviour. When making a decision, however, the information learnt using these parallel streams was combined within ventromedial prefrontal cortex. These findings suggest that human social valuation can be realized by means of the same associative processes previously established for learning other, simpler, features of the environment.

Original publication

DOI

10.1038/nature07538

Type

Journal article

Journal

Nature

Publication Date

13/11/2008

Volume

456

Pages

245 - 249

Keywords

Adult, Female, Humans, Learning, Male, Middle Aged, Models, Statistical, Prefrontal Cortex, Reward, Social Behavior