Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The Amyloid/Tau/Neurodegeneration (ATN) framework was proposed to identify the preclinical biological state of Alzheimer's disease (AD). We investigated whether ATN phenotype can be predicted using routinely collected research cohort data. METHODS: 927 EPAD LCS cohort participants free of dementia or Mild Cognitive Impairment were separated into 5 ATN categories. We used machine learning (ML) methods to identify a set of significant features separating each neurodegeneration-related group from controls (A-T-(N)-). Random Forest and linear-kernel SVM with stratified 5-fold cross validations were used to optimize model whose performance was then tested in the ADNI database. RESULTS: Our optimal results outperformed ATN cross-validated logistic regression models by between 2.2% and 8.3%. The optimal feature sets were not consistent across the 4 models with the AD pathologic change vs controls set differing the most from the rest. Because of that we have identified a subset of 10 features that yield results very close or identical to the optimal. DISCUSSION: Our study demonstrates the gains offered by ML in generating ATN risk prediction over logistic regression models among pre-dementia individuals.

Original publication

DOI

10.1371/journal.pone.0288039

Type

Journal article

Journal

PLoS One

Publication Date

2023

Volume

18