Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and Electroencephalography (EEG) data is a valuable tool for understanding how the brain represents and discriminates between different stimuli. Identifying the spatial and temporal signatures of stimuli is typically a crucial output of these analyses. Such analyses are mainly performed using linear, pairwise, sliding window decoding models. These allow for relative ease of interpretation, e.g. by estimating a time-course of decoding accuracy, but have limited decoding performance. On the other hand, full epoch multiclass decoding models, commonly used for brain-computer interface (BCI) applications, can provide better decoding performance. However interpretation methods for such models have been designed with a low number of classes in mind. In this paper, we propose an approach that combines a multiclass, full epoch decoding model with supervised dimensionality reduction, while still being able to reveal the contributions of spatiotemporal and spectral features using permutation feature importance. Crucially, we introduce a way of doing supervised dimensionality reduction of input features within a neural network optimised for the classification task, improving performance substantially. We demonstrate the approach on 3 different many-class task-MEG datasets using image presentations. Our results demonstrate that this approach consistently achieves higher accuracy than the peak accuracy of a sliding window decoder while estimating the relevant spatiotemporal features in the MEG signal.

Original publication

DOI

10.1016/j.neuroimage.2023.120396

Type

Journal article

Journal

Neuroimage

Publication Date

05/10/2023

Volume

282

Keywords

Decoding, MEG, Machine learning, Neuroimaging, Permutation feature importance