Interpretable many-class decoding for MEG.
Csaky R., van Es MWJ., Jones OP., Woolrich M.
Multivariate pattern analysis (MVPA) of Magnetoencephalography (MEG) and Electroencephalography (EEG) data is a valuable tool for understanding how the brain represents and discriminates between different stimuli. Identifying the spatial and temporal signatures of stimuli is typically a crucial output of these analyses. Such analyses are mainly performed using linear, pairwise, sliding window decoding models. These allow for relative ease of interpretation, e.g. by estimating a time-course of decoding accuracy, but have limited decoding performance. On the other hand, full epoch multiclass decoding models, commonly used for brain-computer interface (BCI) applications, can provide better decoding performance. However interpretation methods for such models have been designed with a low number of classes in mind. In this paper, we propose an approach that combines a multiclass, full epoch decoding model with supervised dimensionality reduction, while still being able to reveal the contributions of spatiotemporal and spectral features using permutation feature importance. Crucially, we introduce a way of doing supervised dimensionality reduction of input features within a neural network optimised for the classification task, improving performance substantially. We demonstrate the approach on 3 different many-class task-MEG datasets using image presentations. Our results demonstrate that this approach consistently achieves higher accuracy than the peak accuracy of a sliding window decoder while estimating the relevant spatiotemporal features in the MEG signal.