Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: This study aimed to assess the effectiveness of swimming exercise in alleviating mechanical hypersensitivity and peripheral nerve degeneration associated with a pre-clinical model of painful diabetic neuropathy (PDN). METHODS: This study is a pre-clinical study conducted using the streptozocin (STZ)-induced PDN rat model. Rats were randomly allocated to three groups: a vehicle group of non-diabetic rats (Vehicle, n = 9), a group of rats with PDN (PDN, n = 8), and a group of rats with PDN that performed a swimming exercise program (PDN-SW, n = 10). The swimming exercise program included daily 30-minute swimming exercise, 5 days per week for 4 weeks. Von Frey testing was used to monitor hindpaw mechanical sensitivity over 4 weeks. Assessment of cutaneous peripheral nerve fiber integrity was performed after the 4-week study period via immunohistochemistry for protein gene product 9.5-positive (PGP9.5+) intra-epidermal nerve fiber density (IENFD) in hind-paw skin biopsies by a blinded investigator. RESULTS: The results showed that swimming exercise mitigated but did not fully reverse mechanical hypersensitivity in rats with PDN. Immunohistochemical testing revealed that the rats in the PDN-SW group retained higher PGP9.5+ IENFD compared to the PDN group but did not reach normal levels of the Vehicle group. CONCLUSIONS: The results of this study indicate that swimming exercise can mitigate mechanical hypersensitivity and degeneration of peripheral nerve fibers in rats with experimental PDN.

Original publication




Journal article


Neurosci Lett

Publication Date





Diabetes, Diabetic neuropathy, Intra-epidermal nerve fiber density (IENFD), Physical exercise, Swimming