Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recording multimodal responses to sensory stimuli in infants provides an integrative approach to investigate the developing nervous system. Accurate time-locking across modalities is essential to ensure that responses are interpreted correctly, and could also improve clinical care, for example, by facilitating automatic and objective multimodal pain assessment. Here we develop and assess a system to time-lock stimuli (including clinically-required heel lances and experimental visual, auditory and tactile stimuli) to electrophysiological research recordings and data recorded directly from a hospitalised infant's vital signs monitor. The electronic device presented here (that we have called 'the PiNe box') integrates a previously developed system to time-lock stimuli to electrophysiological recordings and can simultaneously time-lock the stimuli to recordings from hospital vital signs monitors with an average precision of 105 ms (standard deviation: 19 ms), which is sufficient for the analysis of changes in vital signs. Our method permits reliable and precise synchronisation of data recordings from equipment with legacy ports such as TTL (transistor-transistor logic) and RS-232, and patient-connected networkable devices, is easy to implement, flexible and inexpensive. Unlike current all-in-one systems, it enables existing hospital equipment to be easily used and could be used for patients of any age. We demonstrate the utility of the system in infants using visual and noxious (clinically-required heel lance) stimuli as representative examples.

Original publication




Journal article


PLoS One

Publication Date





Humans, Infant, Touch, Child, Hospitalized, Vital Signs, Monitoring, Physiologic