Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most common surgical therapy for Parkinson' s disease (PD). DBS of the pedunculopontine nucleus (PPN) is emerging as a promising surgical therapy for PD as well. In order to better characterize these nuclei in humans, we determined the anatomical connections of the PPN and STN and the topography of these connections using probabilistic diffusion tractography. Diffusion tractography was carried out in eight healthy adult subjects using diffusion data acquired at 1.5 T MRI (60 directions, b=1000 s/mm(2), 2 x 2 x 2 mm(3) voxels). The major connections that we identified from single seed voxels within STN or PPN were present in at least half the subjects and the topography of these connections within a 36-voxel region surrounding the initial seed voxel was then examined. Both the PPN and STN showed connections with the cortex, basal ganglia, cerebellum, and down the spinal cord, largely matching connections demonstrated in primates. The topography of motor and associative brain areas in the human STN was strikingly similar to that shown in animals. PPN Topography has not been extensively demonstrated in animals, but we showed significant topography of cortical and subcortical connections in the human PPN. In addition to demonstrating the usefulness of PDT in determining the connections and topography of small grey matter structures in vivo, these results allow for inference of optimal DBS target locations and add to our understanding of the role of these nuclei in PD.

Original publication

DOI

10.1016/j.neuroimage.2007.05.050

Type

Journal article

Journal

Neuroimage

Publication Date

01/09/2007

Volume

37

Pages

694 - 705

Keywords

Adult, Cerebral Cortex, Diffusion Magnetic Resonance Imaging, Female, Humans, Male, Nerve Fibers, Myelinated, Neural Pathways, Pedunculopontine Tegmental Nucleus, Subthalamic Nucleus