Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In human neuroscience, studies of cognition are rarely grounded in non-task-evoked, 'spontaneous' neural activity. Indeed, studies of spontaneous activity tend to focus predominantly on intrinsic neural patterns (for example, resting-state networks). Taking a 'representation-rich' approach bridges the gap between cognition and resting-state communities: this approach relies on decoding task-related representations from spontaneous neural activity, allowing quantification of the representational content and rich dynamics of such activity. For example, if we know the neural representation of an episodic memory, we can decode its subsequent replay during rest. We argue that such an approach advances cognitive research beyond a focus on immediate task demand and provides insight into the functional relevance of the intrinsic neural pattern (for example, the default mode network). This in turn enables a greater integration between human and animal neuroscience, facilitating experimental testing of theoretical accounts of intrinsic activity, and opening new avenues of research in psychiatry.

Original publication




Journal article


Nat Rev Neurosci

Publication Date





204 - 214