Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Spatially selective arterial spin labeling (ASL) perfusion MRI is sensitive to arterial transit times (ATT) that can result in inaccurate perfusion quantification when ATTs are long. Velocity-selective ASL is robust to this effect because blood is labeled within the imaging region, allowing immediate label delivery. However, velocity-selective ASL cannot characterize ATTs, which can provide important clinical information. Here, we introduce a novel pulse sequence, called VESPA ASL, that combines velocity-selective and pseudo-continuous ASL to simultaneously label different pools of arterial blood for robust cerebral blood flow (CBF) and ATT measurement. METHODS: The VESPA ASL sequence is similar to velocity-selective ASL, but the velocity-selective labeling is made spatially selective, and pseudo-continuous ASL is added to fill the inflow time. The choice of inflow time and other sequence settings were explored. VESPA ASL was compared to multi-delay pseudo-continuous ASL and velocity-selective ASL through simulations and test-retest experiments in healthy volunteers. RESULTS: VESPA ASL is shown to accurately measure CBF in the presence of long ATTs, and ATTs < TI can also be measured. Measurements were similar to established ASL techniques when ATT was short. When ATT was long, VESPA ASL measured CBF more accurately than multi-delay pseudo-continuous ASL, which tended to underestimate CBF. CONCLUSION: VESPA ASL is a novel and robust approach to simultaneously measure CBF and ATT and offers important advantages over existing methods. It fills an important clinical need for noninvasive perfusion and transit time imaging in vascular diseases with delayed arterial transit.

Original publication

DOI

10.1002/mrm.29159

Type

Journal article

Journal

Magn Reson Med

Publication Date

06/2022

Volume

87

Pages

2667 - 2684

Keywords

VESPA ASL, arterial spin labeling, arterial transit time, cerebral blood flow, Arteries, Blood Flow Velocity, Cerebrovascular Circulation, Humans, Magnetic Resonance Imaging, Perfusion, Spin Labels