Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta-ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO-delta and SO-theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations.

Original publication

DOI

10.1016/j.neuroimage.2019.116178

Type

Journal article

Journal

Neuroimage

Publication Date

15/11/2019

Volume

202

Keywords

Cross-frequency coupling, Electrophysiology, Hippocampus, Individual differences, Sleep, Adult, Brain Waves, Female, Hippocampus, Humans, Male, Middle Aged, Sleep, Young Adult