Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Disrupted serotonergic and glutamatergic signaling interact and contribute to the pathophysiology of schizophrenia, which is particularly relevant for the hippocampus where diverse expression of serotonin receptors is noted. Hippocampal atrophy is a well-established feature of schizophrenia, with select subfields hypothesized as particularly vulnerable due to variation in glutamate receptor densities. We investigated hippocampal anomalies in first-episode psychosis (FEP) in relation to receptor distributions by leveraging 4 sources of data: (1) ultra high-field (7-Tesla) structural neuroimaging, and (2) proton magnetic resonance spectroscopy (1H-MRS) of glutamate from 27 healthy and 41 FEP subjects, (3) gene expression data from the Allen Human Brain Atlas and (4) atlases of the serotonin receptor system. Automated methods delineated the hippocampus to map receptor density across subfields. We used gene expression data to correlate serotonin and glutamate receptor genes across the hippocampus. Measures of individual hippocampal shape-receptor alignment were derived through normative modelling and correlations to receptor distributions, termed Receptor-Specific Morphometric Signatures (RSMS). We found reduced hippocampal volumes in FEP, while CA4-dentate gyrus showed greatest reductions. Gene expression indicated 5-HT1A and 5-HT4 to correlate with AMPA and NMDA expression, respectively. Magnitudes of subfield volumetric reduction in FEP correlated most with 5-HT1A (R = 0.64, p = 4.09E-03) and 5-HT4 (R = 0.54, p = 0.02) densities as expected, and replicated using previously published data from two FEP studies. Right-sided 5-HT4-RSMS was correlated with MRS glutamate (R = 0.357, p = 0.048). We demonstrate a putative glutamate-driven hippocampal variability in FEP through a serotonin receptor-density gated mechanism, thus outlining a mechanistic interplay between serotonin and glutamate in determining the hippocampal morphology in schizophrenia.

Original publication

DOI

10.1016/j.pnpbp.2021.110297

Type

Journal article

Journal

Prog Neuropsychopharmacol Biol Psychiatry

Publication Date

07/03/2021

Keywords

Glutamate, MRI, MRS, Schizophrenia, Serotonin