Projections of non-invasive human recordings into state space show unfolding of spontaneous and over-trained choice
Takagi Y., Hunt L., Woolrich MW., Behrens TEJ., Klein-Flügge MC.
AbstractChoices rely on a transformation of sensory inputs into motor responses. Using invasive single neuron recordings, the evolution of a choice process has been tracked by projecting population neural responses into state spaces. Here we develop an approach that allows us to recover state space trajectories on a millisecond timescale in non-invasive human recordings. We selectively suppress activity related to relevant and irrelevant sensory inputs and response direction in magnetoencephalography data acquired during context-dependent choices. Recordings from premotor cortex show a smooth progression from sensory input encoding to response encoding. In contrast to previous macaque recordings, information related to choice-irrelevant features is represented more weakly than choice-relevant sensory information. To test whether this mechanistic difference between species is caused by extensive overtraining common in non-human primate studies, we trained humans on >20,000 trials of the task. Choice-irrelevant features were still weaker than relevant features in premotor cortex after overtraining.