Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dynamic connectivity in functional brain networks is a fundamental aspect of cognitive development, but we have little understanding of the mechanisms driving variability in these networks. Genes are likely to influence the emergence of fast network connectivity via their regulation of neuronal processes, but novel methods to capture these rapid dynamics have rarely been used in genetic populations. The current study redressed this by investigating brain network dynamics in a neurodevelopmental disorder of known genetic origin, by comparing individuals with a ZDHHC9-associated intellectual disability to individuals with no known impairment. We characterised transient network dynamics using a Hidden Markov Model (HMM) on magnetoencephalography (MEG) data, at rest and during auditory oddball stimulation. The HMM is a data-driven method that captures rapid patterns of coordinated brain activity recurring over time. Resting-state network dynamics distinguished the groups, with ZDHHC9 participants showing longer state activation and, crucially, ZDHHC9 gene expression levels predicted the group differences in dynamic connectivity across networks. In contrast, network dynamics during auditory oddball stimulation did not show this association. We demonstrate a link between regional gene expression and brain network dynamics, and present the new application of a powerful method for understanding the neural mechanisms linking genetic variation to cognitive difficulties.

Original publication




Journal article


Hum Brain Mapp

Publication Date





530 - 544


atypical brain development, cognitive development, functional connectivity, human genetics, magnetoencephalography