Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2019 Elsevier Inc. Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy. Goossens, Rodriguez-Vita et al. show that cancer cells scavenge membrane cholesterol from tumor-associated macrophages, resulting in their reprogramming toward an immune-suppressive and tumor-promoting phenotype. Targeting cholesterol efflux in macrophages counters this reprogramming and reduces tumor progression in a model of ovarian cancer.

Original publication

DOI

10.1016/j.cmet.2019.02.016

Type

Journal article

Journal

Cell Metabolism

Publication Date

04/06/2019

Volume

29

Pages

1376 - 1389.e4