Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Marmosets and macaques are common nonhuman primate models of cognition, yet marmosets appear more distractible and perform worse in cognitive tasks. The dorsolateral prefrontal cortex (dlPFC) is pivotal for sustained attention, and research in macaques suggests that dopaminergic modulation and inhibitory parvalbumin (PV) neurons could influence distractor resistance. Here we compare the two species using a visual fixation task with distractors, perform molecular and anatomical analyses in dlPFC, and link functional microcircuitry with cognitive performance using computational modeling. We show that marmosets are more distractible than macaques, and that marmoset dlPFC PV neurons contain higher levels of dopamine D1 receptor (D1R) transcripts and protein, similar to levels in mice. Our modeling indicates that higher D1R expression in marmoset dlPFC PV neurons may increase distractibility by making dlPFC microcircuits more vulnerable to disruptions of their task-related persistent activity, especially when dopamine is released in dlPFC in response to unexpected salient stimuli.

Original publication

DOI

10.1038/s42003-025-08297-0

Type

Journal article

Journal

Commun Biol

Publication Date

01/07/2025

Volume

8

Keywords

Animals, Prefrontal Cortex, Receptors, Dopamine D1, Callithrix, Parvalbumins, Neurons, Male, Attention, Female, Macaca, Cognition, Macaca mulatta