Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To establish the influence of prolonged denervation on the recovery of a motor nerve, the rat facial nerve was transected and denervated for 0 to 224 days. Then, the freshly transected hypoglossal nerve was sutured to the predegenerated facial nerve (hypoglossal-facial nerve anastomosis, HFA). Using this nerve cross-anastomosis paradigm we analyzed the nerve regeneration and muscle reinnervation 7 to 112 days post-suture operation (DPSO). After HRP injection into the whiskerpad 931 ± 27 hypoglossal neurons were labeled at 112 DPSO after immediate HFA. Following 14 to 112 days denervation the number of labeled neurons increased to 138% (14 days delay), 154% (56 days), and 145% (112 days). In contrast, the reinnervation was poorer after 7 days denervation with the number of neurons increasing to 84%, and after long-term denervation of 224 days the number of neurons increased to 81%. The increase in amplitude of evoked electromyography wave after nerve suture correlated with the number of labeled neurons. After immediate HFA each regenerated motoneuron established on average 5.1 myelinated sprouts at 112 DPSO. The number of sprouts remained constant after delayed suture of 14 to 112 days, whereas the slower reinnervation after 7 or 224 days delay was accompanied by a massive sprouting of 9.1 or 8.1, respectively, sprouts per neuron. The muscles showed recovery after any denervation time. The muscle cross-sectional area continuously decreased with longer denervation time. This decrease was only significant after 224 days denervation (67% of the normal value). We conclude that motor nerve reconstruction achieves better functional results after a definite period of denervation when using a nerve cross-anastomosis paradigm. (C) 2000 Academic Press.

Original publication

DOI

10.1006/exnr.2000.7309

Type

Journal article

Journal

Experimental Neurology

Publication Date

01/01/2000

Volume

162

Pages

98 - 111