Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Objective: Although Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB) show a wide clinical and neuropathologic overlap, they are differentiated according to the order and latency of cognitive and motor symptom appearance. Whether both are distinct disease entities is an ongoing controversy. Therefore, we directly compared patients with DLB and PDD with multitracer PET. Methods: PET with 18fluorodopa (FDOPA), N -11C-methyl-4-piperidyl acetate (MP4A), and 18flu- orodeoxyglucose (FDG) was performed in 8 patients with PDD, 6 patients with DLB, and 9 patients with PD without dementia vs age-matched controls. Data were analyzed with voxel-based statistical parametric mapping and region of interest-based statistics.Results: We found a reduced FDOPA uptake in the striatum and in limbic and associative prefrontal areas in all patient groups. Patients with PDD and patients with DLB showed a severe MP4A and FDG binding reduction in the neocortex with increasing signal diminution from frontal to occipital regions. Significant differences between PDD and DLB were not found in any of the radioligands used. Patients with PD without dementia had a mild cholinergic deficit and no FDG reductions vs controls.Conclusions: Patients with dementia with Lewy bodies and Parkinson disease dementia share the same dopaminergic and cholinergic deficit profile in the brain and seem to represent 2 sides of the same coin in a continuum of Lewy body diseases. Cholinergic deficits seem to be crucial for the development of dementia in addition to motor symptoms. The spatial congruence of cholinergic deficits and energy hypometabolism argues for cortical deafferentation due to the degeneration of projection fibers from the basal forebrain. Copyright © by AAN Enterpnsos, Inc.

Original publication

DOI

10.1212/WNL.0b013e3181d55f61

Type

Journal article

Journal

Neurology

Publication Date

16/03/2010

Volume

74

Pages

885 - 892