Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background:: Inconsistent changes of cognitive functioning have been reported in patients with Parkinson disease (PD) with deep brain stimulation (DBS) of the subthalamic nucleus (STN). To investigate the underlying pathomechanisms, we correlated alterations of cognitive test performance and changes of neuronal energy metabolism in frontal basal ganglia projection areas under bilateral STN stimulation. METHODS:: We conducted verbal fluency, learning, and memory tests and 18-fluorodeoxyglucose (FDG) PET in nine patients with PD with STN-DBS before and 6 months after surgery. Using coregistered MRI, postoperative changes of the normalized cerebral metabolic rates of glucose (nCMRGlc) in the dorsolateral prefrontal cortex (DLPFC), lateral orbitofrontal cortex (LOFC), ventral and dorsal cingulum (v/dACC), and in Broca area were determined and correlated with alterations of neuropsychological test results. RESULTS:: After surgery, highly variable changes of both cognitive test performance and frontal nCMRGlc values were found with significant correlations between verbal fluency and FDG uptake in the left DLPFC (Brodmann area [BA] 9, 46), left Broca area (BA 44/45), and the right dACC (BA 32). A decrease of nCMRGlc in the left OFC (BA 11/47) and dACC (BA 32) correlated with a decline of verbal learning. All patients showed reduced metabolic activity in the right anterior cingulate cortex after DBS. Baseline cognitive abilities did not predict verbal learning or fluency changes after surgery. CONCLUSIONS:: These data show a significant linear relationship between changes in frontal 18-fluorodeoxyglucose PET activity and changes in cognitive outcome after deep brain stimulation of the subthalamic nucleus (STN) in advanced Parkinson disease. The best correlations were found in the left frontal lobe (dorsolateral prefrontal cortex and Broca area). Baseline performance on cognitive tests did not predict cognitive or metabolic changes after STN electrode implantation. © 2009 AAN Enterprises, Inc.

Original publication

DOI

10.1212/01.wnl.0000338536.31388.f0

Type

Journal article

Journal

Neurology

Publication Date

06/01/2009

Volume

72

Pages

42 - 49