Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The spatial patterning of gene expression shapes cortical organization and function. The macaque is a fundamental model organism in neuroscience, but the translational potential of macaque gene expression rests on the assumption that it is a good proxy for patterns of corresponding proteins (vertical translation) and for patterns of orthologous human genes (horizontal translation). Here, we systematically benchmark regional gene expression in macaque cortex against (i) macaque cortical receptor density and in vivo and ex vivo microstructure and (ii) human cortical gene expression. We find moderate cortex-wide correspondence between macaque gene expression and protein density, which improves by considering layer-specific gene expression. Half of the examined genes exhibit significant correlation between macaque and human across the cortex. Interspecies correspondence of gene expression is greater in unimodal than in transmodal cortex, recapitulating evolutionary cortical expansion and gene-protein correspondence in the macaque. These results showcase the potential and limitations of macaque cortical transcriptomics for translational discovery within and across species.

Original publication

DOI

10.1126/sciadv.ads6967

Type

Journal article

Journal

Sci Adv

Publication Date

28/02/2025

Volume

11

Keywords

Animals, Humans, Macaca, Protein Biosynthesis, Brain, Benchmarking, Transcriptome, Gene Expression Regulation, Gene Expression, Gene Expression Profiling, Cerebral Cortex