Search results
Found 8091 matches for
Artificial intelligence for neuro MRI acquisition: a review.
OBJECT: To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS: A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS: The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION: The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.
Evaluating brain group structure methods using hierarchical dynamic models
In graph theory, complex structures are studied, as well as the dynamics of the connectivity strength of this structure. However, in the estimation procedure, particular characteristics need to be considered at some level as informative when estimating the characteristics of a group. This work proposes a model that provides dynamic estimation of the network structure based on a model that makes it possible to incorporate hierarchy (individual information) in the process. In addition, we show the feasibility of modeling a complex structure by levels, exemplifying this by cluster analysis as a visualization of the embedding projection reduction space. Our case study is a neuroscience experiment, which needs to estimate the brain connectivity map, that is, to study the information flow of the brain in resting-stage subjects. Methods for estimating group networks can be grouped into the following 4 categories: group-structure (GS), virtual-typical-subject (VTS), common-structure (CS), and individual-structure (IS). These four group-structure estimation methods were compared in the context of the Multiregression Dynamic Models. Results showed that the proposed Bayesian Network Structure Dynamic estimation, using GS and hierarchical dynamic models, accommodates the latent/personal information in the estimation process by extracting the pattern shared between them. Moreover, the cluster analysis estimation corroborates the empirical results and expert judgments.
Identifying novel data-driven subgroups in congenital heart disease using multi-modal measures of brain structure.
Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N=93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N=88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes.
Oxytocin Exhibits Neuroprotective Effects on Hippocampal Cultures under Severe Oxygen-Glucose Deprivation Conditions.
Perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy can result in severe, long-lasting neurological deficits. In vitro models, such as oxygen-glucose deprivation (OGD), are used experimentally to investigate neuronal response to metabolic stress. However, multiple variables can affect the severity level of OGD/PA and may confound any measured treatment effect. Oxytocin (OXT) has emerged as a potential neuroprotective agent against the deleterious effects of PA. Previous studies have demonstrated OXT's potential to enhance neuronal survival in immature hippocampal cultures exposed to OGD, possibly by modulating gamma-aminobutyric acid-A receptor activity. Moreover, OXT's precise impact on developing hippocampal neurons under different severities of OGD/PA remains uncertain. In this study, we investigated the effects of OXT (0.1 µM and 1 µM) on 7-day-old primary rat hippocampal cultures subjected to 2 h OGD/sham normoxic conditions. Cell culture viability was determined using the resazurin assay. Our results indicate that the efficacy of 1 µM OXT treatment varied according to the severity of the OGD-induced lesion, exhibiting a protective effect (p = 0.022) only when cellular viability dropped below 49.41% in non-treated OGD cultures compared to normoxic ones. Furthermore, administration of 0.1 µM OXT did not yield significant effects, irrespective of lesion severity (p > 0.05). These findings suggest that 1 µM OXT treatment during OGD confers neuroprotection exclusively in severe lesions in hippocampal neurons after 7 days in vitro. Further research is warranted to elucidate the mechanisms involved in OXT-mediated neuroprotection.
Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo.
Major depressive disorder (MDD) is a heterogeneous clinical syndrome with widespread subtle neuroanatomical correlates. Our objective was to identify the neuroanatomical dimensions that characterize MDD and predict treatment response to selective serotonin reuptake inhibitor (SSRI) antidepressants or placebo. In the COORDINATE-MDD consortium, raw MRI data were shared from international samples (N = 1,384) of medication-free individuals with first-episode and recurrent MDD (N = 685) in a current depressive episode of at least moderate severity, but not treatment-resistant depression, as well as healthy controls (N = 699). Prospective longitudinal data on treatment response were available for a subset of MDD individuals (N = 359). Treatments were either SSRI antidepressant medication (escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data were harmonized, and HYDRA, a semi-supervised machine-learning clustering algorithm, was utilized to identify patterns in regional brain volumes that are associated with disease. MDD was optimally characterized by two neuroanatomical dimensions that exhibited distinct treatment responses to placebo and SSRI antidepressant medications. Dimension 1 was characterized by preserved gray and white matter (N = 290 MDD), whereas Dimension 2 was characterized by widespread subtle reductions in gray and white matter (N = 395 MDD) relative to healthy controls. Although there were no significant differences in age of onset, years of illness, number of episodes, or duration of current episode between dimensions, there was a significant interaction effect between dimensions and treatment response. Dimension 1 showed a significant improvement in depressive symptoms following treatment with SSRI medication (51.1%) but limited changes following placebo (28.6%). By contrast, Dimension 2 showed comparable improvements to either SSRI (46.9%) or placebo (42.2%) (β = -18.3, 95% CI (-34.3 to -2.3), P = 0.03). Findings from this case-control study indicate that neuroimaging-based markers can help identify the disease-based dimensions that constitute MDD and predict treatment response.
Prevalence of weakness and factors mediating discrepancy between reported and observed leg weakness in people with sciatica.
PURPOSE: To establish the prevalence and agreement between reported and observed leg weakness in people with sciatica. To establish which factors mediate any identified difference between reported and observed leg weakness in people with sciatica. METHODS: 68 people with a clinical diagnosis of sciatica, records from spinal service, secondary care NHS Hospital, England, UK reviewed. Primary outcome measures were the sciatica bothersome index for reported leg weakness and the Medical Research Council scale for observed weakness. Agreement was established with Cohen's Kappa and intraclass correlation coefficient. Potential factors that may mediate a difference between reported and observed weakness included leg pain, sciatica bothersome index sensory subscale, age, hospital anxiety and depression subscale for anxiety. RESULTS: 85% of patients reported weakness but only 34% had observed weakness. Cohen's Kappa (0.066, 95% CI - 0.53, 0.186; p = 0.317)] and ICC 0.213 (95% CI - 0.26, 0.428, p = 0.040) both showed poor agreement between reported and observed weakness. The difference between reported and observed measures of weakness was mediated by the severity of leg pain (b = 0.281, p = 0.024) and age (b = 0.253, p = 0.042). CONCLUSION: There is a high prevalence of reported leg weakness in people with sciatica, which is not reflected in observed clinical measures of weakness. Differences between reported and observed weakness may be driven by the severity of leg pain and age. Further work needs to establish whether other objective measures can detect patient reported weakness.
Thermal Stimulus Task fMRI in the Cervical Spinal Cord at 7 Tesla.
PURPOSE: Although functional MRI is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0. Increasing field strength enables higher spatial resolution and improved sensitivity to BOLD signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first stimulus task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D EPI protocols, as they differ in sensitivity to spatial and temporal B0 inhomogeneity. METHODS: The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. For each protocol, the BOLD response to thirteen 10-second noxious thermal stimuli applied to the right thumb was acquired in a 10-minute fMRI run. Image quality, temporal SNR, and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. RESULTS: Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. CONCLUSION: Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment.
Coupling cognitive and brainstem dysfunction in multiple sclerosis-related chronic neuropathic limb pain.
Chronic pain in multiple sclerosis is common and difficult to treat. Its mechanisms remain incompletely understood. Dysfunction of the descending pain modulatory system is known to contribute to human chronic pain conditions. However, it is not clear how alterations in executive function influence this network, despite healthy volunteer studies linking function of the descending pain modulatory system, to cognition. In adults with multiple sclerosis-associated chronic neuropathic limb pain, compared to those without pain, we hypothesized altered functional connectivity of the descending pain modulatory system, coupled to executive dysfunction. Specifically we hypothesized reduced mental flexibility, because of potential importance in stimulus reappraisal. To investigate these hypotheses, we conducted a case-control cross-sectional study of 47 adults with relapsing remitting multiple sclerosis (31 with chronic neuropathic limb pain, 16 without pain), employing clinical, neuropsychological, structural, and functional MRI measures. We measured brain lesions and atrophy affecting descending pain modulatory system structures. Both cognitive and affective dysfunctions were confirmed in the chronic neuropathic limb pain group, including reduced mental flexibility (Delis Kaplan Executive Function System card sorting tests P
Enhanced Temporal Coupling between Thalamus and Dorsolateral Prefrontal Cortex Mediates Chronic Low Back Pain and Depression.
Numerous neuroimaging studies have demonstrated that the brain plasticity is associated with chronic low back pain (cLBP). However, there is a lack of knowledge regarding the underlying mechanisms of thalamic pathways for chronic pain and psychological effects in cLBP caused by lumbar disc herniation (LDH). Combining psychophysics and magnetic resonance imaging (MRI), we investigated the structural and functional brain plasticity in 36 patients with LDH compared with 38 age- and gender-matched healthy controls. We found that (1) LDH patients had increased psychophysical disturbs (i.e., depression and anxiety), and depression (Beck-Depression Inventory, BDI) was found to be an outstanding significant factor to predict chronic pain (short form of the McGill Pain Questionnaire, SF-MPQ); (2) the LDH group showed significantly smaller fractional anisotropy values in the region of posterior corona radiate while gray matter volumes were comparable in both groups; (3) resting state functional connectivity analysis revealed that LDH patients exhibited increased temporal coupling between the thalamus and dorsolateral prefrontal cortex (DLPFC), which further mediate the relationship from chronic pain to depression. Our results emphasized that thalamic pathways underlying prefrontal cortex might play a key role in regulating chronic pain and depression of the pathophysiology of LDH.
Relapsing antibody-negative patients with features of neuromyelitis optica spectrum disorders: Differences in N-acetylaspartate level in the cervical spinal cord indicate distinct underlying processes.
BACKGROUND: Due to lack of biomarkers, antibody-negative patients with features of neuromyelitis optica spectrum disorders (NMOSD) are among the most challenging to diagnose and treat. Using unsupervised clustering, we recently identified 'MS-like', 'spinal MS-like', 'classic NMOSD-like' and 'NMOSD-like with brain involvement' subgroups in this cohort. OBJECTIVE: We used magnetic resonance spectroscopy (MRS) to examine differences in the level of key metabolites in the spinal cord between the four identified subgroups. METHODS: Twenty-five relapsing antibody-negative patients with NMOSD features classified by the unsupervised algorithm to one of the subgroups underwent a prospective cervical spinal cord MRS. Spectra from 16 patients fulfilled quality criteria and were included in the analysis. RESULTS: Total N-acetylaspartate (tNAA), but not total choline (tCho) or myo-inositol (Ins), was significantly different between the four subgroups (p = 0.03). In particular, tNAA was 47.8% lower in the 'MS-like' subgroup as compared with the 'classic NMOSD-like' subgroup (p = 0.02). While we found a negative overall correlation between tNAA and disability score (r = -0.514, p = 0.04) in the whole cohort, the disability score did not differ significantly between the subgroups to explain subgroup differences in tNAA level. CONCLUSIONS: Significant differences in the cervical spinal cord tNAA measurements confirm that the previously identified clinico-radiologic subgroups contain patients with distinct underlying disease processes.
The analgesic effect of nostalgia elicited by idiographic and nomothetic approaches on thermal stimulus.
Nostalgia is shown to relieve an individual's perception of pain evoked by cold water, pressure, and thermal stimuli. However, there is no direct evidence to show the analgesic effects of different nostalgia-inducing methods on various stimulus intensities. We conducted two studies to examine the analgesic effect, at different pain intensities, after inducing nostalgia either idiographically or nomothetically. Study 1 (N = 118) induced nostalgia through an idiographic approach (i.e., event reflection task) and found that nostalgia relieved both high and low thermal pain. Study 2 (N = 66) induced nostalgia through a nomothetic approach (i.e., viewing nostalgic pictures) and found that nostalgia relieved low but not high thermal pain. The findings verify the analgesic effect of nostalgia on thermal pain and suggest the potential moderating role of the nostalgia induction approach and pain intensity. Practically, these findings have implications for using nostalgia as a nonpharmacological treatment for pain.