Search results
Found 8234 matches for
Cohort profile: the Oxford Parkinson's Disease Centre Discovery Cohort MRI substudy (OPDC-MRI).
PURPOSE: The Oxford Parkinson's Disease Centre (OPDC) Discovery Cohort MRI substudy (OPDC-MRI) collects high-quality multimodal brain MRI together with deep longitudinal clinical phenotyping in patients with Parkinson's, at-risk individuals and healthy elderly participants. The primary aim is to detect pathological changes in brain structure and function, and develop, together with the clinical data, biomarkers to stratify, predict and chart progression in early-stage Parkinson's and at-risk individuals. PARTICIPANTS: Participants are recruited from the OPDC Discovery Cohort, a prospective, longitudinal study. Baseline MRI data are currently available for 290 participants: 119 patients with early idiopathic Parkinson's, 15 Parkinson's patients with pathogenic mutations of the leucine-rich repeat kinase 2 or glucocerebrosidase (GBA) genes, 68 healthy controls and 87 individuals at risk of Parkinson's (asymptomatic carriers of GBA mutation and patients with idiopathic rapid eye movement sleep behaviour disorder-RBD). FINDINGS TO DATE: Differences in brain structure in early Parkinson's were found to be subtle, with small changes in the shape of the globus pallidus and evidence of alterations in microstructural integrity in the prefrontal cortex that correlated with performance on executive function tests. Brain function, as assayed with resting fMRI yielded more substantial differences, with basal ganglia connectivity reduced in early Parkinson'sand RBD. Imaging of the substantia nigra with the more recent adoption of sequences sensitive to iron and neuromelanin content shows promising results in identifying early signs of Parkinsonian disease. FUTURE PLANS: Ongoing studies include the integration of multimodal MRI measures to improve discrimination power. Follow-up clinical data are now accumulating and will allow us to correlate baseline imaging measures to clinical disease progression. Follow-up MRI scanning started in 2015 and is currently ongoing, providing the opportunity for future longitudinal imaging analyses with parallel clinical phenotyping.
International Multicenter Analysis of Brain Structure Across Clinical Stages of Parkinson's Disease.
BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax = -0.20, dmin = -0.09). The bilateral putamen (dleft = -0.14, dright = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Distinct brain atrophy progression subtypes underlie phenoconversion in isolated REM sleep behaviour disorder.
BACKGROUND: Synucleinopathies include a spectrum of disorders varying in features and severity, including idiopathic/isolated REM sleep behaviour disorder (iRBD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Distinct brain atrophy patterns may already be seen in iRBD; however, how brain atrophy begins and progresses remains unclear. METHODS: A multicentric cohort of 1276 participants (451 polysomnography-confirmed iRBD, 142 PD with probable RBD, 87 DLB, and 596 controls) underwent T1-weighted MRI and longitudinal clinical assessments. Brain atrophy was quantified using vertex-based cortical surface reconstruction and volumetric segmentation. The unsupervised machine learning algorithm, Subtype and Stage Inference (SuStaIn), was used to reconstruct spatiotemporal patterns of brain atrophy progression. FINDINGS: SuStaIn identified two distinct subtypes of brain atrophy progression: 1) a "cortical-first" subtype, with atrophy beginning in the frontal lobes and involving the subcortical structures at later stages; and 2) a "subcortical-first" subtype, with atrophy beginning in the limbic areas and involving cortical structures at later stages. Both cortical- and subcortical-first subtypes were associated with a higher rate of increase in MDS-UPDRS-III scores over time, but cognitive decline was subtype-specific, being associated with advancing stages in patients classified as cortical-first but not subcortical-first. Classified patients were more likely to phenoconvert over time compared to stage 0/non-classified patients. Among the 88 patients with iRBD who phenoconverted during follow-up, those classified within the cortical-first subtype had a significantly increased likelihood of developing DLB compared to PD, unlike those classified within the subcortical-first subtype. INTERPRETATION: There are two distinct atrophy progression subtypes in iRBD, with the cortical-first subtype linked to an increased likelihood of developing DLB, while both subtypes were associated with worsening parkinsonian motor features. This underscores the potential utility of subtype identification and staging for monitoring disease progression and patient selection for trials. FUNDING: This study was supported by grants to S.R. from Alzheimer Society Canada (0000000082) and by Parkinson Canada (PPG-2023-0000000122). The work performed in Montreal was supported by the Canadian Institutes of Health Research (CIHR), the Fonds de recherche du Québec - Santé (FRQS), and the W. Garfield Weston Foundation. The work performed in Oxford was funded by Parkinson's UK (J-2101) and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). The work performed in Prague was funded by the Czech Health Research Council (grant NU21-04-00535) and by The National Institute for Neurological Research (project number LX22NPO5107), financed by the European Union - Next Generation EU. The work performed in Newcastle was funded by the NIHR Newcastle BRC based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The work performed in Paris was funded by grants from the Programme d'investissements d'avenir (ANR-10-IAIHU-06), the Paris Institute of Neurosciences - IHU (IAIHU-06), the Agence Nationale de la Recherche (ANR-11-INBS-0006), Électricité de France (Fondation d'Entreprise EDF), the EU Joint Programme-Neurodegenerative Disease Research (JPND) for the Control-PD Project (Cognitive Propagation in Prodromal Parkinson's disease), the Fondation Thérèse et René Planiol, the Fonds Saint-Michel; by unrestricted support for research on Parkinson's disease from Energipole (M. Mallart) and the Société Française de Médecine Esthétique (M. Legrand); and by a grant from the Institut de France to Isabelle Arnulf (for the ALICE Study). The work performed in Sydney was supported by a Dementia Team Grant from the National Health and Medical Research Council (#1095127). The work performed in Cologne was funded by the Else Kröner-Fresenius-Stiftung (grant number 2019_EKES.02), the Köln Fortune Program, Faculty of Medicine, University of Cologne, and the "Netzwerke 2021 Program (Ministry of Culture and Science of Northrhine Westphalia State). The work performed in Aarhus was supported by funding from the Lundbeck Foundation, Parkinsonforeningen (The Danish Parkinson Association), and the Jascha Foundation.
Presynaptic Dopaminergic Imaging Characterizes Patients with REM Sleep Behavior Disorder Due to Synucleinopathy.
OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.
Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials.
The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.
Diffusion Imaging in Tremor
Diffusion-weighted magnetic resonance imaging (DWI) of the brain is a magnetic resonance technique that probes the motion of free water undergoing spontaneous diffusion in living tissue. Unlike conventional, structural MRI, DWI provides insights into the microscopic composition, integrity and orientation of structures in the human brain. DWI and its derivative measures enable the study of the microstructure of the brain and its white-matter connectivity. These non-invasive measures offer a window into the neuropathology of tremor, and the underlying tremor disorders. In Parkinson’s disease (PD), changes in diffusion-derived parameters such as mean diffusivity (MD) and fractional anisotropy (FA) have been reported in the substantia nigra and its connections to the striatum when compared to control subjects, suggesting that these imaging measures are sensitive to the degeneration of the nigral dopaminergic neurons and their striatal projections. In essential tremor (ET), a link between diffusion-derived measures and the severity of tremor has been shown. DWI-derived diffusion tractography (DT) enables the study of connectional targets that mediate the effects of deep brain stimulation (DBS) for tremor, and carries the promise to help guide stereotaxic surgical targeting in the future. DT has also provided insight into the motor circuits putatively affected by accidental, tremor-causing brain lesions. In conclusion, DWI is a promising tool in the study of tremor disorders. Further research is needed to determine if DWI may be useful to plan stereotaxic surgery for tremor.
Learning Interpretable Regularized Ordinal Models from 3D Mesh Data for Neurodegenerative Disease Staging
We extend the sparse, spatially piecewise-contiguous linear classification framework for mesh-based data to ordinal logistic regression. The algorithm is intended for use with subcortical shape and cortical thickness data where progressive clinical staging is available, as is generally the case in neurodegenerative diseases. We apply the tool to Parkinson’s and Alzheimer’s disease staging. The resulting biomarkers predict Hoehn-Yahr and cognitive impairment stages at competitive accuracy; the models remain parsimonious and outperform one-against-all models in terms of the Akaike and Bayesian information criteria.
Longitudinal Changes in Parkinson's Disease Symptoms with and Without Rapid Eye Movement Sleep Behavior Disorder: The Oxford Discovery Cohort Study.
BACKGROUND: Parkinson's disease (PD) comorbid with rapid eye movement sleep behavior disorder (RBD) may show more severe motor and nonmotor symptoms, suggesting a distinct PD subtype. OBJECTIVE: The aim of this study was to investigate the impact of RBD on the longitudinal change of motor and nonmotor symptoms in patients with PD. METHODS: Patients with early PD (diagnosed within 3.5 years) recruited from 2010 to 2019 were followed every 18 months in the Oxford Parkinson's Disease Centre Discovery cohort. At each visit, we used standard questionnaires and measurements to assess demographic features and motor and nonmotor symptoms (including RBD, daytime sleepiness, mood, autonomic symptoms, cognition, and olfaction). Data were analyzed with linear mixed effects and Cox regression models. Possible RBD (pRBD) was longitudinally determined according to RBD Screening Questionnaire scores. RESULTS: A total of 923 patients were recruited (mean age: 67.1 ± 9.59 years; 35.9% female), and 788 had follow-up assessment(s) (mean: 4.8 ± 1.98 years, range: 1.3-8.3). Among them, 33.3% were identified as pRBD (PD + pRBD). Patients with PD + pRBD had more severe baseline symptoms and showed faster progression on Movement Disorder Society-Unified Parkinson's Disease Rating Scale parts I and III, Purdue Pegboard test, and Beck Depression Inventory scores. Moreover, PD + pRBD was associated with an increased level of risk for mild cognitive impairment (hazard ratio [HR] = 1.36, 95% confidence interval [CI]: 1.01-1.83), freezing of gait (HR = 1.42, 95% CI: 1.10-1.86), and frequent falling (HR = 1.62, 95% CI: 1.02-2.60). CONCLUSIONS: Patients with PD + pRBD progress faster on motor, mood, and cognitive symptoms, confirming a more aggressive PD subtype that can be identified at baseline and has major clinical implications. © 2021 International Parkinson and Movement Disorder Society.
Altered network stability in progressive supranuclear palsy.
The clinical syndromes of Progressive Supranuclear Palsy (PSP) may be mediated by abnormal temporal dynamics of brain networks, due to the impact of atrophy, synapse loss and neurotransmitter deficits. We tested the hypothesis that alterations in signal complexity in neural networks influence short-latency state transitions. Ninety-four participants with PSP and 64 healthy controls were recruited from two independent cohorts. All participants underwent clinical and neuropsychological testing and resting-state functional MRI. Network dynamics were assessed using hidden Markov models and neural signal complexity measured in terms of multiscale entropy. In both cohorts, PSP increased the proportion of time in networks associated with higher cognitive functions. This effect correlated with clinical severity as measured by the PSP-rating-scale, and with reduced neural signal complexity. Regional atrophy influenced abnormal brain-state occupancy, but abnormal network topology and dynamics were not restricted to areas of atrophy. Our findings show that the pathology of PSP causes clinically relevant changes in neural temporal dynamics, leading to a greater proportion of time in inefficient brain-states.
Comparing Programming Sessions of Vim-DBS.
Background: Essential Tremor (ET) is a progressive neurological disorder characterized by postural and kinetic tremor most commonly affecting the hands and arms. Medically intractable ET can be treated by deep brain stimulation (DBS) of the ventral intermediate nucleus of thalamus (VIM). We investigated whether the location of the effective contact (most tremor suppression with at least side effects) in VIM-DBS for ET changes over time, indicating a distinct mechanism of loss of efficacy that goes beyond progression of tremor severity, or a mere reduction of DBS efficacy. Methods: We performed programming sessions in 10 patients who underwent bilateral vim-DBS surgery between 2009 and 2017 at our department. In addition to the intraoperative (T1) and first clinical programming session (T2) a third programming session (T3) was performed to assess the effect- and side effect threshold (minimum voltage at which a tremor suppression or side effects occurred). Additionally, we compared the choice of the effective contact between T1 and T2 which might be affected by a surgical induced "brain shift." Discussion: Over a time span of about 4 years VIM-DBS in ET showed continuous efficacy in tremor suppression during stim-ON compared to stim-OFF. Compared to immediate postoperative programming sessions in ET-patients with DBS, long-term evaluation showed no relevant change in the choice of contact with respect to side effects and efficacy. In the majority of the cases the active contact at T2 did not correspond to the most effective intraoperative stimulation site T1, which might be explained by a brain-shift due to cerebral spinal fluid loss after neurosurgical procedure.
A nudge towards better lumbar puncture practice.
BACKGROUND: Despite a body of evidence demonstrating reduced incidence of post-lumbar puncture headache associated with pencil-point (vs bevelled-edge) needles, their use remains variable in the UK. METHODS: A multimodal longitudinal intervention was performed over a 12-month period at a tertiary neurology referral centre. In addition to simulation training using pencil-point needles and an electronic documentation pro forma, a change in the default needles presented in clinical environments was performed. RESULTS: Prior to the intervention, pencil-point needle usage was minimal. Documentation significantly improved throughout the intervention period. Simulation training interventions only resulted in transient, moderate improvements in pencil-point needle usage. However, changing the default produced a marked increase in use that was sustained. No significant changes in operator success rate were found. CONCLUSIONS: In the context of wider literature on the power of default options in driving behavioural choices, changing defaults may be an effective, inexpensive and acceptable intervention to improve lumbar puncture practice.
Cortical aging - new insights with multiparametric quantitative MRI.
Understanding the microstructural changes related to physiological aging of the cerebral cortex is pivotal to differentiate healthy aging from neurodegenerative processes. The aim of this study was to investigate the age-related global changes of cortical microstructure and regional patterns using multiparametric quantitative MRI (qMRI) in healthy subjects with a wide age range. 40 healthy participants (age range: 2nd to 8th decade) underwent high-resolution qMRI including T1, PD as well as T2, T2* and T2' mapping at 3 Tesla. Cortical reconstruction was performed with the FreeSurfer toolbox, followed by tests for correlations between qMRI parameters and age. Cortical T1 values were negatively correlated with age (p=0.007) and there was a widespread age-related decrease of cortical T1 involving the frontal and the parietotemporal cortex, while T2 was correlated positively with age, both in frontoparietal areas and globally (p=0.004). Cortical T2' values showed the most widespread associations across the cortex and strongest correlation with age (r= -0.724, p=0.0001). PD and T2* did not correlate with age. Multiparametric qMRI allows to characterize cortical aging, unveiling parameter-specific patterns. Quantitative T2' mapping seems to be a promising imaging biomarker of cortical age-related changes, suggesting that global cortical iron deposition is a prominent process in healthy aging.
Signal variance-based collateral index in DSC perfusion: A novel method to assess leptomeningeal collateralization in acute ischaemic stroke.
As a determinant of the progression rate of the ischaemic process in acute large-vessel stroke, the degree of collateralization is a strong predictor of the clinical outcome after reperfusion therapy and may influence clinical decision-making. Therefore, the assessment of leptomeningeal collateralization is of major importance. The purpose of this study was to develop and evaluate a quantitative and observer-independent method for assessing leptomeningeal collateralization in acute large-vessel stroke based on signal variance characteristics in T2*-weighted dynamic susceptibility contrast (DSC) perfusion-weighted MR imaging (PWI). Voxels representing leptomeningeal collateral vessels were extracted according to the magnitude of signal variance in the PWI raw data time series in 55 patients with proximal large-artery occlusion and an intra-individual collateral vessel index (CVIPWI) was calculated. CVIPWI correlated significantly with the initial ischaemic core volume (rho = -0.459, p = 0.0001) and the PWI/DWI mismatch ratio (rho = 0.494, p = 0.0001) as an indicator of the amount of salvageable tissue. Furthermore, CVIPWI was significantly negatively correlated with NIHSS and mRS at discharge (rho = -0.341, p = 0.015 and rho = -0.305, p = 0.023). In multivariate logistic regression, CVIPWI was an independent predictor of favourable functional outcome (mRS 0-2) (OR = 16.39, 95% CI 1.42-188.7, p = 0.025). CVIPWI provides useful rater-independent information on the leptomeningeal collateral supply in acute stroke.
Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome.
IMPORTANCE: Atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes but have not been prospectively studied. OBJECTIVE: To define the distinguishing features of PSP and CBS subtypes and to assess their usefulness in facilitating early diagnosis and separation from PD. DESIGN, SETTING, PARTICIPANTS: This cohort study recruited patients with APS and PD from movement disorder clinics across the United Kingdom from September 1, 2015, through December 1, 2018. Patients with APS were stratified into the following groups: those with Richardson syndrome (PSP-RS), PSP-subcortical (including PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (including PSP-frontal and PSP-CBS overlap subtypes), MSA-parkinsonism, MSA-cerebellar, CBS-Alzheimer disease (CBS-AD), and CBS-non-AD. Data were analyzed from February 1, through May 1, 2019. MAIN OUTCOMES AND MEASURES: Baseline group comparisons used (1) clinical trajectory; (2) cognitive screening scales; (3) serum neurofilament light chain (NF-L) levels; (4) TRIM11, ApoE, and MAPT genotypes; and (5) volumetric magnetic resonance imaging measures. RESULTS: A total of 222 patients with APS (101 with PSP, 55 with MSA, 40 with CBS, and 26 indeterminate) were recruited (129 [58.1%] male; mean [SD] age at recruitment, 68.3 [8.7] years). Age-matched control participants (n = 76) and patients with PD (n = 1967) were included for comparison. Concordance between the antemortem clinical and pathologic diagnoses was achieved in 12 of 13 patients with PSP and CBS (92.3%) undergoing postmortem evaluation. Applying the Movement Disorder Society PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP from 58 to 101. Forty-nine of 101 patients with reclassified PSP (48.5%) did not have the classic PSP-RS subtype. Patients in the PSP-subcortical group had a longer diagnostic latency and a more benign clinical trajectory than those in PSP-RS and PSP-cortical groups. The PSP-subcortical group was distinguished from PSP-cortical and PSP-RS groups by cortical volumetric magnetic resonance imaging measures (area under the curve [AUC], 0.84-0.89), cognitive profile (AUC, 0.80-0.83), serum NF-L level (AUC, 0.75-0.83), and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP groups. Eight of 17 patients with CBS (47.1%) undergoing cerebrospinal fluid analysis were identified as having the CBS-AD subtype. Patients in the CBS-AD group had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment, and higher APOE-ε4 allele frequency than those in the CBS-non-AD group (AUC, 0.80-0.87; P
Cortical quantitative MRI parameters are related to the cognitive status in patients with relapsing-remitting multiple sclerosis.
OBJECTIVES: We aimed to assess cortical damage in patients with relapsing-remitting multiple sclerosis (RRMS)/clinically isolated syndrome (CIS) with a multiparametric, surface-based quantitative MRI (qMRI) approach and to evaluate the correlation of imaging-derived parameters with cognitive scores, hypothesizing that qMRI parameters are correlated with cognitive abilities. METHODS: Multiparametric qMRI-data (T1, T2 and T2* relaxation times and proton density (PD)) were obtained from 34 patients/24 matched healthy control subjects. Cortical qMRI values were analyzed on the reconstructed cortical surface with Freesurfer. We tested for group differences of cortical microstructural parameters between the healthy and patient collectives and for partial Pearson correlations of qMRI parameters with cognitive scores, correcting for age. RESULTS: Cortical T2-/T2*-/PD values and four cognitive parameters differed between groups (p ≤ 0.046). These cognitive scores, reflecting information processing speed, verbal memory, visuospatial abilities, and attention, were correlated with cortical T2 (p ≤ 0.02) and T2* (p ≤ 0.03). Cortical changes appeared heterogeneous across the cortex and their distribution differed between the parameters. Vertex-wise correlation of T2 with neuropsychological parameters revealed specific patterns of cortical damage being related to distinct cognitive deficits. CONCLUSIONS: Microstructural changes are distributed heterogeneously across the cortex in RRMS/CIS. QMRI has the potential to provide surrogate parameters for the assessment of cognitive impairment in these patients for clinical studies. The characteristics of cognitive impairment in RRMS might depend on the distribution of cortical changes. KEY POINTS: • The goal of the presented study was to investigate cortical changes in RRMS/CIS and their relation to the cognitive status, using multiparametric quantitative MRI. • Cortical T2, T2*, and PD increases observed in patients appeared heterogeneous across the cortex and their distribution differed between the parameters. • Vertex-wise correlation of T2 with neuropsychological scores revealed specific patterns of cortical changes being related to distinct cognitive deficits.
Predictors of motor complications in early Parkinson's disease: A prospective cohort study.
OBJECTIVE: The objective of this study was to identify clinical predictors of motor complications (dyskinesia and motor fluctuations) of levodopa in a prospectively recruited PD cohort using longitudinal analysis. METHODS: An inception cohort (Oxford Discovery) of 734 patients was followed to a maximum of 10 years from diagnosis using a discrete-time survival analysis. A subset analysis was used to validate an online dyskinesia-risk calculator developed from the results of the Stalevo Reduction in Dyskinesia Evaluation PD trial. RESULTS: A total of 186 cases of dyskinesia and 254 cases of motor fluctuations were observed. Dyskinesia incidence increased with time (risk per 100 participants [95% confidence interval] 13 [11-16] <3.5 years, 16 [13-21] 3.5-5.0 years, 19 [14-26] 5-6.5 years, and 23 [16-33] >6.5 years from diagnosis). Motor complication predictors were grouped as medication predictors, disease predictors and patient predictors. Baseline nonmotor feature severity, low mood, anxiety, and age at symptom onset were associated with motor complications among a number of previously identified predictors. Replication of the Stalevo Reduction in Dyskinesia Evaluation PD calculator was reasonable with the area under the curve for dyskinesia risk score as a predictor of dyskinesia being 0.68 (95% confidence interval, 0.55-0.81). CONCLUSIONS: This study quantifies risk of motor complications, finds consistent predictors, and demonstrates the novel finding that nonmotor features of PD, particularly low mood and anxiety, are significant risk factors for motor complications. Further validation of dyskinesia risk scores are required as well as evidence to determine if the routine use of such scores can be clinically valuable in enhancing patient care and quality of life. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Impulse control disorders in Parkinson disease and RBD: A longitudinal study of severity.
OBJECTIVE: To describe the prevalence, natural history, and risk factors for impulse control behaviors (ICBs) among people with Parkinson disease (PD), those with REM sleep behavior disorder (RBD), and controls. METHODS: Participants with early PD (within 3.5 years of diagnosis), those with RBD, and controls were clinically phenotyped and screened for ICBs longitudinally (with the Questionnaire for Impulsivity in Parkinson's Disease). ICB-positive individuals were invited for a semistructured interview, repeated 1 year later. The severity of the ICB was assessed with the Parkinson's Impulse Control Scale. Multiple imputation and regression models were used to estimate ICB prevalence and associations. RESULTS: Data from 921 cases of PD at baseline, 768 cases at 18 months, and 531 cases at 36 months were included, with 21% to 25% screening positive for ICBs at each visit. Interviews of ICB screen-positive individuals revealed that 10% met formal criteria for impulse control disorders (ICD), while 33% had subsyndromal ICD (ICB symptoms without reaching the formal diagnostic criteria for ICD). When these data were combined through the use of multiple imputation, the prevalence of PD-ICB was estimated at 19.1% (95% confidence interval 10.1-28.2). On follow-up, 24% of cases of subsyndromal ICD had developed full symptoms of an ICD. PD-ICD was associated with dopamine agonist use, motor complications, and apathy but not PD-RBD. ICD prevalence in the RBD group (1%) was similar to that in controls (0.7%). CONCLUSIONS: ICBs occur in 19.1% of patients with early PD, many persisting or worsening over time. RBD is not associated with increased ICD risk. Psychosocial drivers, including mood and support networks, affect severity.